THREE POINTS MAKE A TRIANGLE... OR A CIRCLE

Peter Schröder

joint work with Liliya Kharevych, Boris Springborn, Alexander Bobenko

IN THIS SECTION

Circles as basic primitive it's all about the underlying geometry! Euclidean: triangles conformal: circles two examples conformal parameterization discrete curvature energies

The Erlangen program (1872)

geometry through symmetries

affine, perspectiveconformal

Möbius xform

Library of Congress

Conformal Mappings

Piecewise Linear Surfaces map to domain

- discrete conformal
- preserve angles
 - as well as possible

possible circles as primitives

PARAMATERIZATIONS

An old problem...

can't have it all
keep angles
keep areas

USGS Map Projections Site

Our setup ind discrete conformal map from triangle mesh to Euclidean domain

Sounds Great!

You knew there was a catch... Laplace problem

Dirichlet or Neumann bndry. cond.

Sounds Great!

You knew there was a catch... Laplace problem

Dirichlet or Neumann bndry. cond.

too much control or too little...

AN OLD IDEA

Riemann mapping theorem conformal maps map infinitesimal circles to infinitesimal circles

Thurston (85)
finite circles
circle packing

© Ken Stephenson

An Old Idea

Riemann mapping theorem conformal maps map infinitesimal circles to infinitesimal circles

Thurston (85)

finite circles
circle packing

© Ken Stephenson

AN OLD IDEA

Riemann mapping theorem conformal maps map infinitesimal circles to infinitesimal circles

HISTORY

Theory early: Koebe 36; Andreev 70 modern: Rudin & Sullivan 87

■ modern: Rudin & Sullivan 87 (hex packing); He & Schramm 98 (C[∞] convgce.)

variational approaches 91-02

de Verdière, Brägger, Rivin, Leibon, Bobenko & Springborn

CIRCLE PATTERN PROBLEM

Rivin 94, Bobenko & Springborn o4 given a triangulation K an angle assignment $\forall e_{ij} \in E : 0 < \theta_e < \pi$ sum conditions $\forall v_i \in V_{int} : \sum_{e \ni v_i} \theta_e = 2\pi$

CIRCLE PATTERN PROBLEM

Uniquely realizable iff a coherent angle system exists $\hat{\alpha}_{ij}^k > 0 \qquad \forall t_{ijk} \in T : \hat{\alpha}_{ij}^k + \hat{\alpha}_{jk}^i + \hat{\alpha}_{ki}^j = \pi,$ $\forall e_{ij} \in E : \theta_e = \begin{cases} \pi - \hat{\alpha}_{ij}^k - \hat{\alpha}_{ij}^l \\ \pi - \hat{\alpha}_{ii}^k \end{cases}$

linear feasibility problem

GEOMETRY AT AN EDGE

ENERGY

Solution is unique minimum! **convex energy** in $\rho_{ijk} = \log r_{ijk}$

$$S(\mathbf{\rho}) = \sum_{e \in E_{\text{int}}} \left(\text{ImLi}(e^{\mathbf{\rho}_k - \mathbf{\rho}_l + i\theta_e}) + \text{ImLi}(e^{\mathbf{\rho}_l - \mathbf{\rho}_k + i\theta_e}) - (\pi - \theta_e)(\mathbf{\rho}_k + \mathbf{\rho}_l) \right) \\ - \sum_{e \in E_{\text{bdy}}} 2(\pi - \theta_e)\mathbf{\rho}_k + 2\pi \sum_{t \in T} \mathbf{\rho}_t$$

easy gradients and Hessians!

ALGORITHM

Angle assignment quadratic program boundary curvatures free, prescribed Minimize energy Lay out circles

 $Q(\hat{\alpha}) = \sum |\hat{\alpha}_{ij}^k - \alpha_{ij}^k|^2$ $\forall \hat{\alpha}_{ij}^k : \hat{\alpha}_{ij}^k > 0$ $\forall e_{ij} \in E_{\text{int}} : \hat{\alpha}_{ij}^k + \hat{\alpha}_{ij}^l < \pi$ $\forall t_{ijk} \in T : \hat{\alpha}_{ij}^k + \hat{\alpha}_{jk}^i + \hat{\alpha}_{ki}^j = \pi$ $\forall v_k \in V_{\text{int}} : \sum_{t_{ijk} \ni v_k} \hat{\alpha}_{ij}^k = 2\pi$

$$\forall v_k \in V_{\text{bdy}} : \sum_{t_{ijk} \ni v_k} \hat{\alpha}_{ij}^k < 2\pi$$

 $\forall v_k \in V_{\text{bdy}} : \sum_{t_{ijk} \ni v_k} \hat{\alpha}_{ij}^k = \pi - \kappa_k$

angles and radii determine layout

RESULTS

Boundary Control

You get to control curvature...

QUASI-CONFORMAL DISTR.

QUASI-CONFORMAL DISTR.

ROBUSTNESS

PROBLEMS

The price to pay
 want angles

 (nearly)
 preserved

 must suffer

 large area
 distortion

PIECEWISE FLAT

Back to first principles what does the mesh give us? everywhere flat with some exceptions Euclidean metric with cone singularities

CONE SINGULARITIES

Circle pattern approach allows for cone singularities!

set cone vertices

$$2\pi \neq \Theta_i = \sum_{e_{ij} \ni v_i} \Theta_{ij}$$

rest of machinery works as before

DDG COURSE SIGGRAPH 2005

30

PROPERTIES

Circle patterns with cone sing. discrete conformal Iow area distortion arbitrary topology no cutting a priori! globally continuous

SUMMARY

Discrete conformal mappings formulate as circle pattern problem solution is min. of convex energy simple gradient and Hessian cone singularities no cutting a priori & arbitrary topology You *can* have both: area & angle!

More Fun with Circles

Willmore energy of a surface

$$E_W(S) = \int_S ((H/2)^2 - K) \, dA$$

$$\int_{S} \kappa_1^2 + \kappa_2^2 \, dA$$

of interest: minimizers
 theory of surfaces
 geometric modeling

Conformal Geometry
More Fun with Circles

Willmore energy of a surface

$$E_W(S) = \int_S ((H/2)^2 - K) dA$$

$$\int_{S} \alpha + \beta (H - H_0)^2 \, dA$$

of interest: minimizers

- theory of surfaces
- geometric modeling
- physical modeling

Conformal Geometry

DISCRETE WILLMORE FLOW

Previous Work

Discrete setting Discrete Differential Geometry 4th order flows [SK01] [XPB05] [YB02] use existing lower order operators discretized continuous setting level set [TWBO03] [DR04] FEM [DDE03] [HGR01] [CDD*04]

DISC. WILLMORE ENERGY

Definition [Bo5]
object of conformal geometry...
...use circles and angles

$$W_i = \sum_{e_{ii}} \beta_j^i - 2\pi$$

at each vertex

Properties I

Discrete Willmore energy vanishes iff co-spherical & convex

Properties I

Discrete Willmore energy vanishes iff co-spherical & convex

$$\sum_{j} \beta_{j} \ge 2\pi \quad \sum_{j} \alpha_{j} \le \sum_{j} \beta_{j}$$

44

Gradient singularity
what about csc(β)?
direction of decrease
Boundary conditions
fixed: easy

Gradient singularity what about $csc(\beta)$? direction of decrease **Boundary conditions** fixed: easy free: add vertex at ∞ **boundary edge** β

Gradient singularity what about $csc(\beta)$? direction of decrease **Boundary conditions** fixed: easy **I** free: add vertex at ∞ **boundary edge** β

Gradient singularity what about $csc(\beta)$? direction of decrease **Boundary conditions** fixed: easy **I** free: add vertex at ∞ **boundary edge** β

Simple tests

sphere

Simple tests

sphere
boundaries

DDG COURSE SIGGRAPH 2005

60

DDG COURSE SIGGRAPH 2005

75

SUMMARY

Discrete Willmore flow preserve symmetries: Möbius semi-implicit time stepping relevance in many geo. proc. areas surface theory variational geometric modeling

physical modeling

DDG COURSE SIGGRAPH 2005

0 U T L O O K

Future work
more boundary conditions
incorporate reference curvature
control of triangle quality
variational subdivision
numerical robustness

CIRCLE SUMMARY

Obey the geometry what geometry do the objects of interest belong to? conformal parameterization curvature energies circles and the angles they make with one another complete non-linear treatment

DDG COURSE SIGGRAPH 2005