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What will we measure?

Subject to be measured, S
• an object living in n-dim space
• convex, compact subset of Rn

+ finite unions and intersections
• e.g.,

• points, edges, faces
• a mesh



What is a reasonable measure?

Properties
• a measure is scalar-valued
• empty set
• additivity
• normalization (parallelotope, P)
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What is a reasonable measure?

Properties
• a measure is scalar-valued
• empty set
• additivity
• normalization (parallelotope, P)

• example: volume

Other measures?

real number,coordinate-frame invariant



Other Measures

Elementary symmetric functions

area/2
length/4



Invariant Measures

Intrinsic volumes
• n measures in n dimensions
• how to generalize to compact convex sets?

Geometric probability
• measure points in set
• probability of hitting set



Geometric probability

Blindly throw darts… count number of hits
Darts: k-dim subspaces of n-D
• points
• lines
• planes
• volumes

k=0
n=2



Indicator function,
• input: a dart, ω
• output (point dart):

1 if dart hits body
0 if dart misses body

Geometric probability
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Geometric probability

Indicator function,
• input: a dart, ω
• output (point dart):

1 if dart hits body
0 if dart misses body
• in general,

output is # hits
k=0
n=2

0
0

0
0

0

0

0

1
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Geometric probability

Throw N random darts to estimate area

k=0
n=2

R

C



Geometric probability

Throw N random darts to estimate area
Throw all the darts you have…



Geometric probability

Throw N random darts to estimate area
Throw all the darts you have…

measure of
 darts (k=

0,n=2)

hitting ta
rget C

2nd intrinsicvolume of C



Example: lines in R3

Measure of lines through rectangle,
• prop. to area of R

• two ways to explain
• consider each fixed line orientation in turn
• consider each point on the rectangle in turn



Example: lines in R3

Additivity in action
• consider the union of two rectangles
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Example: lines in R3
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Example: lines in R3

Additivity in action
• consider the union of two rectangles
• inclusion - exclusion principle



Example: planes in R3

Measure of planes along a curve,
• consider simplest curve: line segment
•           proportional to length
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Measure of planes along a curve,
• consider simplest curve: line segment
•           proportional to length



Example: planes in R3

Measure of planes along a curve,
• consider polyline
•           proportional to length



Example: planes in R3

Measure of planes hitting parallelotope,
• consider “particularly useful” polyline

• indicator fn. for c = indicator fn. for P

P
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• consider “particularly useful” polyline

• indicator fn. for c = indicator fn. for P
•           proportional to length of polyline
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Example: planes in R3

Measure of planes hitting parallelotope,
• consider “particularly useful” polyline

• indicator fn. for c = indicator fn. for P
•           proportional to length of polyline

• for general shape E,

x1

x2

xx33



Axioms
• it is a measure
• Euclidian motion invariance
• additivity
• some normalization
• µk(C) for compact convex set is the

measure of all linear varieties of dim. n-k
meeting C

Recap



But wait…

Do we have all of them?
• there is one missing
• recall: elementary symmetric functions



But wait…

Do we have all of them?
• there is one missing
• recall: elementary symmetric functions
• what about e0(x1,x2,…,xn)?



Euler characteristic

Symmetric function of order zero
• for any compact, convex set:

• “Euler characteristic”
• is this a measure?



Euler characteristic

Symmetric function of order zero
• for any compact, convex set:

• “Euler characteristic χ”
• is this a measure?

homework!



Euler characteristic

Is it additive?

e2

χ(e2) = 1

χ(e1) = 1

e1
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Euler characteristic

Is it additive?

χ(e1) = 1

e1

e2

χ(e2) = 1

e1 ∪ e2

e1 ∩ e2

χ(e1 ∩ e2) = 1



Euler characteristic

Is it additive?

χ(e1) = 1

e1

e2

χ(e2) = 1

e1 ∪ e2

χ(e1 ∪ e2) = 1 + 1 − 1 = 1



Euler characteristic

Is it additive? yes

Is it invariant under rigid-body motion? yes



Continuity

Our final axiom
• measure should be continuous



Example: lines in R3

Measure of lines through planar surface
• limit process gives surface area for

arbitrary planar surface (not just for R)
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Example: lines in R3

Measure of lines through planar surface
• limit process gives surface area for

arbitrary planar surface (not just for R)

disjoint unionof rectangles



Example: lines in R3

Area of a (non-planar, disjoint) surface, D
1. partition into planar regions, Ci

Çáëàçáåí=ìåáçå



Example: lines in R3

Area of a (non-planar, disjoint) surface, D
1. partition into planar regions, Ci

2. add areas of each region

åìãÄÉê=çÑ=íáãÉë=ω=ãÉÉíë=a



Example: lines in R3

Area of a (non-planar, disjoint) surface, D
1. partition into planar regions, Ci

2. add areas of each region

åìãÄÉê=çÑ=íáãÉë=ω=ãÉÉíë=a

0 1 2



Here’s the clincher
…



Hadwiger (1957)

These measures
form a basis

for all continuous,
additive,

rigid motion invariant
 measures on ring of convex sets.



Hadwiger (1957)

These measures
form a basis

for all continuous,
additive,

rigid motion invariant
 measures on ring of convex sets.

FUNDAMENAL RESULT



ãáå=Çáëí~åÅÉ=íç=ëÉí

Putting it together

Steiner, Cauchy, Hadwiger
• expand a convex set outward by epsilon



ãáå=Çáëí~åÅÉ=íç=ëÉí

Putting it together

Steiner, Cauchy, Hadwiger
• expand a convex set outward by epsilon

• the increase in volume is a polynomial in ε
• the coefficients are the intrinsic volumes!



Steiner example in R3

volume

area

mean width

Euler charac.



Steiner example in R3

Rewrite as boundary integral:
symmetric even f’n of principal curvatures:

volume

area

mean width

Euler charac.

H0=1, H1=(κ1+κ2), H2=κ1κ2
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Steiner example in R3

Rewrite as boundary integral:
symmetric even f’n of principal curvatures:

H0=1, H1=(κ1+κ2), H2=κ1κ2

= surface area

= total mean curvature`

= Euler charac.



A Steiner walk-through, 2d

Inflate a planar
polygon by epsilon

What is the new area?A



A Steiner walk-through, 2d

Each edge contributes
a rectangle



A Steiner walk-through, 2d

Each vertex
contributes a sector



A Steiner walk-through, 3d

Inflate a polyhedron

What is the new
volume?



A Steiner walk-through, 3d

Each face contributes
a parallelotope



A Steiner walk-through, 3d

Each edge contributes
a wedge of a cylinder



A Steiner walk-through, 3d

Each vertex contributes a spherical wedge



A Steiner walk-through, 3d

Each vertex contributes a spherical wedge

α



A Steiner walk-through, 3d
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A Steiner walk-through, 3d



A Steiner walk-through, 3d



How to use?

Want to measure deformation?
• only very few measures need apply

• volume, area, mean width, χ

Define curvatures of polyhedra?
• deal with convexity issue…

kçêã~ä=ÅóÅäÉ
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