GEOMETRY PROCESSING: A FIRST SET OF APPLICATIONS

Peter Schröder

IN THIS SECTION

What characterizes shape? brief recall of classic notions mean and Gaussian curvature how to express them in the discrete setting of meshes? putting them to work smoothing parameterization

Basic setup parameterized surface $S: \mathbb{R}^2 \supset \Omega \rightarrow \mathbb{R}^3$ S(u,v) = (x(u,v), y(u,v), z(u,v))tangent vectors $c: I \rightarrow S$ c(0) = p $\dot{c}(0) = \alpha$ tangent space T_pS tangent space

Metric on Surface

Measure stuff angle, length, area \blacksquare all require an inner product $\langle v, w \rangle$ we have: Euclidean inner product in domain want to turn this into: inner product on surface

LIFTING ONTO SURFACE

Use basis vectors • du and dv in domain • $S_{,u}$ and $S_{,v}$ on surface • record all their inner products $I_p = \begin{pmatrix} \langle S_{,u}(p), S_{,u}(p) \rangle & \langle S_{,u}(p), S_{,v}(p) \rangle \\ \langle S_{,v}(p), S_{,u}(p) \rangle & \langle S_{,v}(p), S_{,v}(p) \rangle \end{pmatrix}$

LIFTING ONTO SURFACE

FIRST FUNDAMENTAL FORM

Measuring area areas in tangent space $\int \int_{\Omega} |S_{,u} \times S_{,v}| \, du \, dv = A(S) = \int_{S} 1 \, dA$ In odependence on parameterization discrete setting... easy sum areas of triangles

GEOMETRY OF THE NORMAL

Gauss map normal at point $N(p) = \frac{S_{,u} \times S_{,v}}{|S_{,u} \times S_{,v}|}(p)$ $N: S \to S^2$ consider curve in surface again study its curvature at p

normal "tilts" along curve

INVARIANTS

Gaussian and mean curvature determinant and trace only $\det dN_p = \kappa_1 \kappa_2 = K$ intrinsic $\operatorname{tr} dN_p = \kappa_1 + \kappa_2 = H$ extrinsic eigen values and (ortho) vectors $dN_p(e_1) = \kappa_1 e_1 \qquad dN_p(e_2) = \kappa_2 e_2$ $|H_p|_{\mathbb{S}\subset T_pS} < \max_{\substack{max \to \kappa_1 \\ \min \to \kappa_2}} \max_{min \to \kappa_2}$

GAUSSIAN CURVATURE

BOUNDARY INTEGRALS

BOUNDARY INTEGRALS

GEOMETRIC FLOW (AREA)

DDG COURSE SIGGRAPH 2005

GEOMETRIC FLOW (AREA)

Mean Curvature Flow

Laplace-Beltrami
Dirichlet energy

$$\min \int (\nabla u)^2 \rightsquigarrow \frac{\Delta u = 0}{u|_{\partial\Omega} = u_0}$$
on surface

$$\partial_t p_i = -\mathbf{H}_i$$

$$= -1/4A_i \sum_{e_{ij}} (\cot \alpha_{ij} + \cot \alpha_{ji}) (p_i - p_j)$$

how to measure distortion?

RECAP

Invariants as overarching theme shape does not depend on Euclidean motions metric and curvatures smooth continuous notions to discrete notions variational formulations careful: generally only as averages DDG COURSE SIGGRAPH 2005

DOWN THE LINE

Approach so far essentially linear: PL mesh... same equations can be derived with DEC: discrete exterior calculus abstract measure theory There is more some invariants are non-linear