DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION

Eitan Grinspun with Mathieu Desbrun & Peter Schröder

DIFFERENTIAL GEOMETRY

Why do we care?

geometry of surfaces

Grape (u. of Bon

mothertongue of physical theories $E = \int_{S} \alpha + \beta (H - H_0)^2 + \gamma K dA$

computation: simulation/processing

A BIT OF HISTORY

Geometry is the key!

studied for centuries

Bobenko and Suris

Cartan, Poincaré, Lie, Hodge, de Rham, Gauss, Noether,...

mostly differential geometry

differential and integral calculus

The study of invariants and symmetries

Getting Started

How to apply DiffGeo ideas? surfaces as collections of samples

and topology (connectivity)
 apply continuous ideas
 BUT: setting is discrete
 what is the right way?
 discrete vs. discretized

DISCRETIZED

Build smooth manifold structure collection of charts

- mutually compatible on their overlaps
- form an atlas
- realize as smooth functions
 - differentiate away...

DISCRETE GEOMETRY

Basic tool differential geometry metric, curvature, etc. **Discrete realizations** "meshes" computational geom. graph theory

DISCRETE DIFF.GEOMETRY

Building from the ground up discrete geometry is the given meshes: triangles, tets more general: cell complex how to do calculus? pick properties of import $\int_{a}^{b} f'(x)dx = f(b) - f(a)$

What characterizes structure(s)? what is shape? Euclidean invariance what is physics? conservation/balance laws what can we measure? mass, area, curvature, flux, circulation

THEMES FOR TODAY

Invariant descriptions quantities invariant under a set of transformations symmetries give rise to momenta Intrinsic descriptions quantities which do not depend on a coordinate frame

WHAT IT ALL MEANS

Benefits $\nabla_a \theta$ everything is geometric often more straightforward tons of indices verboten! The story is not finished... still many open questions in particular: numerical analysis

Total signed curvature Things we will cover $tsc(p) = \sum \alpha_i$ warmup: curves discrete analogues of cont. theorems surfaces: some basic operators the discrete setting putting them to work denoising/smoothing, parameterization

Things we will cover what can we measure invariant measures of "things" curvature integrals without derivatives a first physics model deformation of a shape W(A, K, H) =simulating discrete shells

Things we will cover

interpolation on simplicial complexes, i.e., meshes

discrete exterior calculus

- putting it to work: discrete fluids
 - structure preservation: vorticity

ensured by design!

Things we will cover conformal geometry conformal parameterizations curvature energies how to make all those meshes sampling a surface/volume variational tet meshing