Discrete Differential Geometry: An Applied Introduction

Eitan Grinspun
with
Mathieu Desbrun & Peter Schröder

DDG Course SIGGRAPH 2005
Differential Geometry

Why do we care?

- geometry of surfaces
- mothertongue of physical theories
- computation: simulation/processing

\[E = \int_S \alpha + \beta (H - H_0)^2 + \gamma K \, dA \]
A Bit of History

Geometry is the key!
- studied for centuries
 - Cartan, Poincaré, Lie, Hodge, de Rham, Gauss, Noether,...
- mostly differential geometry
- differential and integral calculus

The study of invariants and symmetries
GETTING STARTED

How to apply DiffGeo ideas?
- surfaces as collections of samples
- and topology (connectivity)
How to apply DiffGeo ideas?

- surfaces as collections of samples
- and topology (connectivity)
- apply continuous ideas
- BUT: setting is discrete
- what is the right way?
- discrete vs. discretized
Discretized

Build smooth manifold structure

- collection of charts
 - mutually compatible on their overlaps
- form an atlas
- realize as smooth functions
 - differentiate away...
Discrete Geometry

Basic tool
- differential geometry
- metric, curvature, etc.

Discrete realizations
- “meshes”
- computational geom.
- graph theory

DDG Course SIGGRAPH 2005
Discrete Diff. Geometry

Building from the ground up

- Discrete geometry is the given
- Meshes: triangles, tets
- More general: cell complex

How to do calculus?

- Pick properties of import

\[\int_{a}^{b} f'(x)dx = f(b) - f(a) \]
What Matters?

Structure preservation!
- Symmetry groups
 - rigid bodies: Euclidean group
 - fluids: diffeomorphism group
 - conformal geometry: Möbius group
- many more: symplectic invariants, Stokes’ theorem, de Rham complex, etc. (pick your favorite…)

Accuracy
Speed
Size
Themes for Today

What characterizes structure(s)?
- what is shape?
 - Euclidean invariance
- what is physics?
 - conservation/balance laws
- what can we measure?
 - mass, area, curvature, flux, circulation
Themes for Today

Invariant descriptions
- quantities invariant under a set of transformations
- symmetries give rise to momenta

Intrinsic descriptions
- quantities which do not depend on a coordinate frame
What it All Means

Benefits

- everything is geometric
- often more straightforward
- tons of indices verboten!

The story is not finished...

- still many open questions
 - in particular: numerical analysis
THE PROGRAM FOR TODAY

Things we will cover

- warmup: curves
- discrete analogues of cont. theorems
- surfaces: some basic operators
- the discrete setting
- putting them to work
- denoising/smoothing, parameterization
The Program for Today

Things we will cover

- what can we measure
 - invariant measures of “things”
 - curvature integrals without derivatives
- a first physics model
 - deformation of a shape
 - simulating discrete shells
THE PROGRAM FOR TODAY

Things we will cover

- interpolation on simplicial complexes, i.e., meshes
- discrete exterior calculus
- putting it to work: discrete fluids
 - structure preservation: vorticity
 - ensured by design!

DDG COURSE SIGGRAPH 2005
THE PROGRAM FOR TODAY

Things we will cover
- conformal geometry
- conformal parameterizations
- curvature energies
- how to make all those meshes
- sampling a surface/volume
- variational tet meshing