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Thin shells and thin plates
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Related work

Researchers in the graphics community:

* Terzopoulos, Bridson, Breen, etc.
- ad-hoc models for cloth

e Bobenko & Suris, Pai
 discrete models of elastic curves

[Choi and Ko



Euler’s elastica

Early formulation of elastic curves
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Bernoulli began generalization to surfaces



Chladni’s vibrating plates

violin bow

Sand settles on
nodal curves



Chladni’s vibrating plates
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Problem setup

What is the
deformation energy?

undeformed deformed
body deformatlon body
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Problem setup

deformed
body




Problem setup

Energy is a non-negative scalar function
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[T. L. Brown. Making truth]
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Problem setup

Internal forces push “downbhill”

[T. L. Brown. Making truth]



Plates

Germain Poisson



Thin plate energy

Germain’s argument:

* bending energy must be a symmetric even
function of principal curvatures



Thin plate energy

Germain’s argument:

* bending energy must be a symmetric even
function of principal curvatures
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Thin plate energy

Poisson’s linearization

* assuming small displacements, approximate
curvature by second derivatives l E

1
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Thin plate energy

Navier’s equation

* to find minimizer for linearized energy,
solve a partial differential egn (PDE)

A*f=0
Bi = [(ap?a




Thin plate energy

Navier’'s equation

® {0 f Inimi ' ized enerav
|‘
> a’U/’U/U/U/f —I_ Qﬁuuvvf _I_ 8’UUUUf

L

A fr=0
Bi = [(af?a




Axiomatic approach

Energy should be:
* symmetric even func’n of principal curvatures
* extrinsic measure
* smooth w.r.t. change in shape
* invariant under rigid-body motion
* simple to compute
® easy to understand



What about masses and springs?

Diagonal springs don’t work for shells.
* undeformed configuration is curved
®* incorrect energy minima




Axiomatic “discrete shells”

“Simplest” answer to desiderata

(H — Hg)?

Derivation:
extrinsic change in shape operator

[Tr(p*S) — Tr(S)]4



Computing discrete shells

Elastic energy_ - 2(9 — 0. )2H67/H




Computing discrete shells
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Computing discrete shells

Elastic energy_ - 2(9 — 0 )2H67JH
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e:ll —
fe=Kp) H}—;’H (0; —0;)Vx,0;
;

(




Upgrade your cloth simulator

Have a cloth simulator handy?
* reuse all the existing code
* retrofit the bending term
* precompute undeformed quantities offline
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Upgrade your cloth simulator

Have a cloth simulator handy?

* reuse all the existing code

* retrofit the bending term

* precompute undeformed quantities offline
reuse code




























Modeling Paper

Paper sheet
* curled
® creased
* pinned




Are we done?

Discrete shells is nice and simple.
What’s next?



Thin shell theory

O L

Kirchhoff Love Karman Koiter




Shell geometry

Shell representation:
middle surface + normal offset

middle surface —» — f |




Stored energy

Step 1: strain

e deformation of small volume

Step 2: energy density
®* compute work
® constitutive model

2

undeformed

Step 3: integrate - -

¢ over shell thickness
e over middle surface

deformed



Assumptions

Thin shell

* thickness much less than radius of
curvature




Assumptions

Kirchhoff-Love
¢ normal lines deform to normal lines

undeformed deformed



Assumptions

Planar stress
* neglect stress in normal direction

restoring forces
lie on tangent plane

undeformed deformed



Assumptions

Normal inextensibility
* distance preserved along normal lines

undeformed deformed



Assumptions

Small strains

e all strains are small
- strains in glass: O(0.0001)
- strains in paper: O(0.01)

* deflections may be large



Shell geometry

Locally description
* consider small neighborhood
* global parameterization not required

undeformed deformed



Deformation mapping

Maps material point on tangent plane
from undeformed to deformed config.
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Deformation gradient

Maps tangent vector
from undeformed to deformed config.
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Strain

Change in squared length l2
between two nearby points




Strain

Change in squared length of tangent vector

VW




Strain

Change in squared length of tangent vector
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Strain

Change in squared length of tangent vector
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Strain

Change in squared length of tangent vector

tH(vw)' (VWI -1



Strain

Change in squared length of tangent vector

tH(vw)' (VWI -1
(v (VW) — DT



Strain

Change in squared length of tangent vector

tH(vw) (VWT - T
(v (VW) — I)E




Strain

Change in squared length of tangent vector

Fom,
(VW (VW) — T




Strain

Change in squared length of tangent vector

BT




Thought experiment

R e N
e
begin ...Stretch ...then bend
at rest, the shell, the shell

1 = (I + Em)TQ To — (I + ZEC)Tl
~ ([ + FE,, + zE.)
Membrane + bending strain

E(Z) — E-'m + 2 AN = E'm, + ZEC:



Surface Energy Density

Energy formulation - bending term
Y h?
24(1 — v?)

(1= v)Tr(E;) + v(TrEe)*)

® geometric interpretation
(14+v)AH? + (1 —v)(AA? + 4AAsin® B)

 change in mean curvature
- change in curvature direction



Planar strain

Consider a single deformed triangle...

7N\



Planar strain

Function only of change in edge lengths!
* (thank you Hadwiger!)
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Discrete bending strain




Material Failure

critical stress fracture

strain




Material Failure

Principal strains
* compute maximal strain

Em T h-Ec o

* eigenvalue > threshold <+>

- split against eigenvector



Results: plastic deformation




Results: plastic deformation




Results: Fracture




Results: Fracture




Results: Fracture




Results: Fracture




Results: Fracture




Results: Fracture




What about convergence?

With sufficient

refinement, does the The length of a continuous curve
discrete energy ag ree ...or take limit over refinement sequence.
with the continuous im fen(p)
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energy?
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Work in progress...



Convergence... why it matters

Maybe small systematic error is ok?
* mesh independence for fine meshes

* adaptive refinement

* requires error criteria
e .. limit must be well-defined

* for simulation
 can use physical parameters

e for variational modeling
« canonical surface definition



Discrete curvature measures

Basic building block . = n.lel#(5)
¢ {otal curvature normal




Discrete curvature measures

Basic building block =H. = ne|e|f(g)
e total curvature normal

Variations of total mean curvature
® peredge  per triangle per vertex




Discrete curvature measures

€

¥
/h =

Basic building block . = n.lel#(5)
e total curvature normal »
Variations of total mean curvature

® peredge  per triangle per vertex

discrete shells,
hinge energy



Discrete curvature measures

€

¥
/h =

Basic building block =H. = ne|e|f(g)
e total curvature normal »
Variations of total mean curvature

* peredge per triangle per vertex

ool ;@eee

discrete shells, triangle-averaged
hinge energy



Discrete curvature measures

€

Basic building block H, =n_|e| f(g) .»7

e total curvature normal »
Variations of total mean curvature

® per edge per triangle per vertex
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discrete shells, triangle-averaged vertex-averaged

hinge energy



Discrete curvature measures

€

Basic building block H, = n_|e| f(g) .»7

e total curvature normal »
Variations of total mean curvature

® peredge  per triangle per vertex
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Test problem
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4-8 patch and 1:2 aspect ratio stripe

flat plate, boundary prescribed by quadratic polynomial
interior free to assume minimal-energy



Test problem
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4-8 patch and 1:2 aspect ratio stripe

flat plate, boundary prescribed by quadratic polynomial
interior free to assume minimal-energy
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Shading and highlight maps

discrete
o shell
triangle
averaged
quadratic
fit

4-8 patch 1:2 aspect ratio
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The next step

Need better handle on convergence
and mesh-independence

Plus, keep the good stulff:
® geometric invariance:
- rigid transforms and scaling
* efficiency
- low FLOPS for gradient and Hessian



Convergence: necessary conditions

Claim

Two necessary conditions must be met so that
for sufficiently fine meshes,
simulation results will be:

* /ndependent of chosen mesh
®* |n agreement with continuous theory.



Convergence condition 1

“The linearized energy of any sampled
quadratic polynomial should be
reproduced exactly.”

® choose any quadratic polynomial surface

* sample the surface
(even with a coarse mesh)

* measure the linearized energy
* must exactly match the continuous energy



Convergence condition 2

“If the boundary conditions are sampled
from a quadratic polynomial, the
minimizer of the discrete energy should
be exactly the sampled polynomial.”
® choose any quadratic polynomial surface

® constrain mesh boundary to samples of poly.
surface

* let mesh interior relax to minimum energy
* mesh interior must lie exactly on poly. surface



Convergence for general meshes

* splines/subdiv. surfaces:
no quadratic polynomial reproduction near extr. vertices

e discrete shells: ‘
no quadratic polynomial reproduction ‘

* triangle quadratic fit:
reproduces quadratic polynomials, but there v
can be lower energy states

* triangle averaged: '
no quadratic polynomial reproduction

e vertex averaged: A\
no quadratic polynomial reproduction v
* Compare: finite elements only have aspect ratio

restrictions



Minimal d.o.f. discretizations

Question:
can we get away with only 6 d.o.f. per
energy term?

Answer:
yes, but we must permit d.o.f.s on edges.



Midedge normal

4-8 patch 1:2 aspect ratio



Reflection maps

ALAA




Mathematics

T. J. Willmore’s surfaces




Mathematics

T. J. Willmore’s surfaces




Mathematics

T. J. Willmore’s surfaces




Physics of membranes

P.B. Canham (U.W. Ontario)

S. Helfrich (FU Berlin)




Physics of membranes

S. Helfrich (FU Berlin) P.B. Canham (U.W. Ontario)




Engineering

Ivil, mechanical, aeronautical design




Geometric modeling

Surface fairing and reconstruction
U. Clarenz, U. Diewalda,G. Dziuk, M. Rumpf, R. Rusu (2004)




Geometric modeling

Variational modeling
M. Botsch L. Kobbelt




Physically-based animation

Shells: elasticity, plasticity, fracture
with D. Zorin, A. Secord, Y. Gingold, J. Han
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