Thin Shells & Curvature-Based Energy

Eitan Grinspun, Columbia University

Joint work with:
Denis Zorin, NYU
Mathieu Desbrun, Caltech
Peter Schröder, Caltech

Thin shells and thin plates

Thin, flexible objects
Shells are naturally *curved*Plates are naturally *flat*

Related work

Researchers in the graphics community:

- Terzopoulos, Bridson, Breen, etc.
 - ad-hoc models for cloth
- Bobenko & Suris, Pai
 - discrete models of elastic curves

[Choi and Ko

Euler's elastica

Early formulation of elastic curves

$$E^{\text{bend}} = \int_0^l \kappa(s)^2 ds$$

Bernoulli began generalization to surfaces

Chladni's vibrating plates

Plate vibrated by violin bow
Sand settles on nodal curves

Chladni's vibrating plates

What is the deformation *energy*?

Energy is a non-negative scalar function

real number, coordinate-frame invarian

Energy is a non-negative scalar function

real number, coordinate-frame invarian

Energy is a non-negative scalar function

Internal forces push "downhill"

Plates

Poisson

Navier

Germain's argument:

 bending energy must be a symmetric even function of principal curvatures

Germain's argument:

 bending energy must be a symmetric even function of principal curvatures

$$E^{bend} = f(\kappa_1, \kappa_2) = \frac{1}{4} \int (\kappa_1 + \kappa_2)^2 dA$$
$$= \int H^2 dA$$

Poisson's linearization

assuming small displacements, approximate curvature by second derivatives

$$E^{bend} = f(\kappa_1, \kappa_2) = \frac{1}{4} \int (\kappa_1 + \kappa_2)^2 dA$$
$$E^{bend}_{lin} = \int (\Delta f)^2 dA$$

Navier's equation

• to find minimizer for linearized energy, solve a partial differential eqn (PDE)

$$\Delta^2 f = 0$$

$$\Delta^{2} f = 0$$

$$E_{lin}^{bend} = \int (\Delta f)^{2} dA$$

Navier's equation

to find minimizer for linearized energy

$$\partial_{uuuu}f + 2\partial_{uuvv}f + \partial_{vvv}f$$

$$\Delta^2 f \stackrel{?}{=} 0$$

$$\Delta^2 f = 0$$

$$E_{lin}^{bend} = \int (\Delta f)^2 dA$$

Axiomatic approach

Energy should be:

- symmetric even func'n of principal curvatures
- extrinsic measure
- smooth w.r.t. change in shape
- invariant under rigid-body motion
- simple to compute
- easy to understand

What about masses and springs?

Diagonal springs don't work for shells.

- undeformed configuration is curved
- incorrect energy minima

Axiomatic "discrete shells"

"Simplest" answer to desiderata

$$(H - H_0)^2$$

Derivation:

extrinsic change in shape operator

$$[\operatorname{Tr}(\varphi^*S) - \operatorname{Tr}(\bar{S})]^2$$

Computing discrete shells

Elastic energy =
$$\frac{K_B}{2} \sum_i (\theta_i - \bar{\theta}_i)^2 \frac{\|\bar{e}_i\|}{\bar{h}_i}$$

Computing discrete shells

Computing discrete shells change in change in normal curvature

Elastic energy = $\frac{K_B}{2} \sum_{i} (\theta_i - \bar{\theta}_i)^2 \frac{|\bar{e}_i|}{\bar{h}_i}$

Computing discrete shells

compensate for nonuniform sample Elastic energy = $\frac{K_B}{2} \sum_{i} (\theta_i)$

Computing discrete shells

Elastic energy =
$$\frac{K_B}{2} \sum_i (\theta_i - \bar{\theta}_i)^2 \frac{\|\bar{e}_i\|}{\bar{h}_i}$$

Gradient gives forces:

$$f_k = K_B \sum_i \frac{\|\bar{e}_i\|}{\bar{h}_i} (\bar{\theta}_i - \theta_i) \nabla_{\mathbf{x}_k} \theta_i$$

Upgrade your cloth simulator

Have a cloth simulator handy?

- reuse all the existing code
- retrofit the bending term
- precompute undeformed quantities offline

$$f_k = K_B \sum_i \frac{\|\bar{e}_i\|}{\bar{h}_i} (\bar{\theta}_i - \theta_i) \nabla_{\mathbf{x}_k} \theta_i$$

Upgrade your cloth simulator

Have a cloth simulator handy?

- reuse all the existing code
- retrofit the bending term
- precompute undeformed quantities offline

$$f_k = K_B \sum_i \frac{\|\bar{e}_i\|}{\bar{h}_i} (\bar{\theta}_i) - \theta_i) \nabla_{\mathbf{x}_k} \theta_i$$

Modeling Paper

Paper sheet

- curled
- creased
- pinned

Are we done?

Discrete shells is nice and simple. What's next?

Thin shell theory

Kirchhoff Love Karman Koiter

Shell geometry

Shell representation: middle surface + normal offset

Stored energy

Step 1: strain

deformation of small volume

Step 2: energy density

- compute work
- constitutive model

Step 3: integrate

- over shell thickness
- over middle surface

deformed

Thin shell

 thickness much less than radius of curvature

Kirchhoff-Love

normal lines deform to normal lines

Planar stress

neglect stress in normal direction

Normal inextensibility

distance preserved along normal lines

Small strains

- all strains are small
 - strains in glass: O(0.0001)
 - strains in paper: O(0.01)
- deflections may be large

Shell geometry

Locally description

- consider small neighborhood
- global parameterization not required

Deformation mapping

Maps material point on tangent plane from undeformed to deformed config.

Deformation gradient

Maps tangent vector from undeformed to deformed config.

Change in squared length between two nearby points

$$|t|^2 - |\overline{t}|^2 = t^T t - \overline{t}^T \overline{t}$$

$$|t|^{2} - |\bar{t}|^{2} = t^{T}t - \bar{t}^{T}\bar{t}$$

$$t = \nabla \Psi \bar{t}$$

$$t^{T} = \bar{t}^{T}(\nabla \Psi)^{T}$$

$$\bar{t}^T (\nabla \Psi)^T (\nabla \Psi) \bar{t} - \bar{t}^T \bar{t}$$

$$\overline{t}^{T}(\nabla \Psi)^{T}(\nabla \Psi)\overline{t} - \overline{t}^{T}\overline{t}$$

$$\overline{t}^{T}((\nabla \Psi)^{T}(\nabla \Psi) - I)\overline{t}$$

$$\overline{t}^{T}(\nabla \Psi)^{T}(\nabla \Psi)\overline{t} - \overline{t}^{T}\overline{t}$$

$$\overline{t}^{T}((\nabla \Psi)^{T}(\nabla \Psi) - I)\overline{t}$$

$$\frac{E_m}{(\nabla \Psi)^T (\nabla \Psi) - I}$$

$$ar{t}^T E_m ar{t}$$

Thought experiment

Membrane + bending strain

$$E(z) = E_m + z\Delta\Lambda = E_m + zE_c$$

Surface Energy Density

Energy formulation - bending term

$$\frac{Yh^3}{24(1-\nu^2)} \left((1-\nu) \text{Tr}(E_c^2) + \nu (\text{Tr}E_c)^2 \right)$$

geometric interpretation

$$(1+\nu)\Delta H^2 + (1-\nu)(\Delta A^2 + 4A\tilde{A}\sin^2\beta)$$

- change in mean curvature
- change in curvature direction

Consider a single deformed triangle...

Function only of change in edge lengths!

• (thank you Hadwiger!)

Function only of

• (thank you Had

$$s_1 = a_1^2 - \bar{a}_1^2$$
 $s_2 = a_2^2 - \bar{a}_2^2$
 $s_3 = a_3^2 - \bar{a}_3^2$

$$E_m = \frac{1}{8A^2} \sum_{i=1}^{3} s_i \left(t_j \otimes t_k + t_k \otimes t_j \right)$$

Discrete bending strain

Material Failure

Material Failure

Principal strains

compute maximal strain

$$E_m \pm hE_c$$

- eigenvalue > threshold
 - split against eigenvector

Results: plastic deformation

Falling Tube

Results: plastic deformation

Falling Tube

Results: Fracture

Results: Fracture

Lightbulbs

Lightbulbs

What about convergence?

With sufficient refinement, does the discrete energy agree with the continuous energy?

Work in progress...

Convergence... why it matters

Maybe small systematic error is ok?

- mesh independence for fine meshes
- adaptive refinement
 - requires error criteria
 - : limit must be well-defined
- for simulation
 - can use physical parameters
- for variational modeling
 - canonical surface definition

Basic building block $\mathbf{H}_e = \mathbf{n}_e |\mathbf{e}| f(\frac{\theta}{2})$

• total curvature normal

Basic building block $\mathbf{H}_e = \mathbf{n}_e |\mathbf{e}| f(\frac{\theta}{2})$

total curvature normal

Variations of total mean curvature

per edge per triangle per vertex

Basic building block $\mathbf{H}_e = \mathbf{n}_e |\mathbf{e}| f(\frac{\theta}{2})$

total curvature normal

Variations of total mean curvature

per edge per triangle per vertex

discrete shells, hinge energy

Basic building block $\mathbf{H}_e = \mathbf{n}_e |\mathbf{e}| f(\frac{\theta}{2})$

total curvature normal

Variations of total mean curvature

per edge per triangle per vertex

discrete shells, triangle-averaged hinge energy

Basic building block $\mathbf{H}_e = \mathbf{n}_e |\mathbf{e}| f(\frac{\theta}{2})$

total curvature normal

Variations of total mean curvature

triangle-averaged

per edge per triangle

discrete shells, hinge energy per vertex

vertex-averaged

Basic building block $\mathbf{H}_e = \mathbf{n}_e |\mathbf{e}| f(\frac{\theta}{2})$

total curvature normal

Variations of total mean curvature

per edge per triangle

discrete shells, hinge energy triangle-averaged

per vertex

vertex-averaged

$$\frac{1}{2} |\sum_{e} (\cot \alpha_e + \cot \beta_e) \mathbf{e}|$$

Test problem

4-8 patch and 1:2 aspect ratio stripe
flat plate, boundary prescribed by quadratic polynomial
interior free to assume minimal-energy

Test problem

4-8 patch and 1:2 aspect ratio stripe
flat plate, boundary prescribed by quadratic polynomial
interior free to assume minimal-energy

Shading and highlight maps

Reflection maps

discrete shell

triangle averaged

quadratic fit

The next step

Need better handle on convergence and mesh-independence

Plus, keep the good stuff:

- geometric invariance:
 - rigid transforms and scaling
- efficiency
 - low FLOPS for gradient and Hessian

Convergence: necessary conditions

Claim

Two necessary conditions must be met so that for sufficiently fine meshes, simulation results will be:

- independent of chosen mesh
- in agreement with continuous theory.

Convergence condition 1

"The linearized energy of any sampled quadratic polynomial should be reproduced **exactly**."

- choose any quadratic polynomial surface
- sample the surface (even with a coarse mesh)
- measure the linearized energy
- must exactly match the continuous energy

Convergence condition 2

"If the boundary conditions are sampled from a quadratic polynomial, the minimizer of the discrete energy should be **exactly** the sampled polynomial."

- choose any quadratic polynomial surface
- constrain mesh boundary to samples of poly.
 surface
- let mesh interior relax to minimum energy
- mesh interior must lie exactly on poly. surface

Convergence for general meshes

- splines/subdiv. surfaces:
 no quadratic polynomial reproduction near extr. vertices
- discrete shells: no quadratic polynomial reproduction
- triangle quadratic fit: reproduces quadratic polynomials, but there can be lower energy states
- triangle averaged:
 no quadratic polynomial reproduction
- vertex averaged: no quadratic polynomial reproduction
- Compare: finite elements only have aspect ratio restrictions

Minimal d.o.f. discretizations

Question:

can we get away with only 6 d.o.f. per energy term?

Answer:

yes, but we must permit d.o.f.s on edges.

Midedge normal

4-8 patch

1:2 aspect ratio

Reflection maps

Mathematics

T. J. Willmore's surfaces

Mathematics

T. J. Willmore's surfaces

$$\frac{1}{4} \int (\kappa_1 - \kappa_2)^2 dA = \int (H^2 - K) dA$$

Mathematics

T. J. Willmore's surfaces

$$\frac{1}{4} \int (\kappa_1 - \kappa_2)^2 dA = \int (H^2 - K) dA$$

$$\int H^2 dA = \frac{1}{4} \int (\kappa_1 + \kappa_2)^2 dA$$

Physics of membranes

S. Helfrich (FU Berlin)

P.B. Canham (U.W. Ontario)

Physics of membranes

Engineering

Civil, mechanical, aeronautical design

Geometric modeling

Surface fairing and reconstruction

U. Clarenz, U. Diewalda, G. Dziuk, M. Rumpf, R. Rusu (2004)

Geometric modeling

Variational modeling

M. Botsch L. Kobbelt

Physically-based animation

Shells: elasticity, plasticity, fracture

with D. Zorin, A. Secord, Y. Gingold, J. Han

Acknowledgements

Denis Zorin, NYU

Mathieu Desbrun, Caltech

Peter Schröder, Caltech

Petr Krysl, UC San Diego

Adrian Secord, Yotam Gingold, Jeff Han, NYU

Multi-res Modeling Group, Caltech

Media Research Lab, Courant Institute, NYU