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Discrete Differential Fluids
An Application of Discrete Differential Modeling to Fluid Mechanics
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Overview
Fluids, fluids, fluids

geometric interpretation of classical models
discrete geometric interpretation

new integration technique

Bigger Picture:
Discrete Differential Modeling

don’t discretize your PDEs
uncover their inherent geometry
then discretize this geometry
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Fluid Models (I)
Euler Equations

inviscid fluids (not viscous)
incompressible
non-linear PDE, with linear constraint

pressure

velocity

momentum eq.

body forcesmass eq.
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Fluid Models (II)
Navier-Stokes Equations

only change: viscosity
coefficient ν

loss of total energy during motion
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Algorithm for Simulation
One of many possibilities… (see CFD lit.)

“Stable Fluids” (Stam 99)
adapted for graphics needs
regular Eulerian discretization

velocity
advection

not “free of
divergence”

solve Poisson
problem
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Implementation Issues
Advection

discretize? Nah…
non-linear and nasty

method of characteristics
parcels transported along velocity…
let’s go backwards in time
− to know where a “parcel” is coming from
− need to interpolate velocities
− and resample them

unconditional stability! (large time step)
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What Where?
Co-located grids

velocities & pressures at vertices

staggered grids

centered
differences

works MUCH better
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The Geometry of Fluids
Euler equations seem clear

advection + div-free projection ad infinitum
numerous follow-up work (Fedkiw et al.)

but what does it mean, geometrically?
“total energy” is rather unintuitive
is there a notion of momentum preservation?

Yes
but of course, we need to massage the PDE 
so as to reveal the geometric structure
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Geometry Revealed
Pressure disappears when we take the curl:

vorticity measures the “spin” of a parcel
vorticity is “advected” along the flow
the circulation around any 

closed loop is constant
as it gets advected
− known as Kelvin’s theorem
− call it preserv. of angular momentum if you want
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Geometry Revealed
So we know:
Integral of vorticity constant on an advected

sheet

Additionally, ω defines u
if we ignore complex topology for a moment
u = ∇x (∆-1ω) because u is divergence free!

Vorticity is the only real variable here
and Kelvin’s is a defining property
(Navier-Stokes: loss along the way)
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Towards a Proper Discretization
Domain discretization = simplicial complex

fluxes through faces for velocity
intrinsic (coordinate-free) and eulerian

» reminiscent of staggered grids…

net flux for divergence
− what comes in…must come out

flux spin for vorticity
Torque created on a “paddle wheel”

valid for any grid…
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Enter Discrete Exterior Calculus
Need for proper link btw flux, vorticity, div

hopefully matching differential counterparts
to create a discrete differential structure

i.e., structure-preserving discretization

Fortunately, that’s DEC
we know how to do all that, right??
flux = 2-form
div = exterior derivative of flux
curl =             of fluxd
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Divergence Operator
Simply d of 2-form

summing face values of tets
returning values in tets

point-based
scalar field

cell-based
scalar field

edge-based
vector field

face-based
vector field

cell-based
scalar field

point-based
scalar field

face-based
vector field

edge-based
vector field
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Curl Operator
Curl requires going to the dual

from faces to dual edges first
then d (sum of dual edge values)
then back onto primal edges

point-based
scalar field

cell-based
scalar field

edge-based
vector field

face-based
vector field

cell-based
scalar field

point-based
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Laplacian Operator
Wait, sum of second partial derivatives…

on a PWL field??
sure, we do it all the time

link to FE/weak formulation

How does it work here? d   d        d   d +=∆
point-based
scalar field

cell-based
scalar field

edge-based
vector field

face-based
vector field

cell-based
scalar field

point-based
scalar field

face-based
vector field

edge-based
vector field

∇ ×∇ •∇

×∇ ∇•∇

Try it for 0-forms at home:
you’ll get the cot formula…
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Gradient Operator (for completeness)

Wait, constant per tet, right? (FEM 101)
yes
but can be stored as values 
on edges, as announced
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Integrating Equations of Motion
We have all the computational set-up

But how do we integrate the motion?

Through preserving important structures?
Circulation/vorticity preservation
Crucial for visual impact

volutes in smoke
vortices in liquids
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Discrete Kelvin’s Theorem
Simple way to integrate Euler equations:

For each 1-simplex
backtrack local loop
in current velocity field
deduce new circulation
− i.e., new discrete vorticity

Find new velocity field
simple Poisson equation
− u = ∇x (∆-1ω)
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Discrete Kelvin’s Theorem
Guarantees circulation preservation 

for any discrete loop
big loop = union of small ones
… even on curved spaces
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Results
New method

exact discrete vorticity preservation
arbitrary simplicial meshes

see also paper by Feldman et al. this year

everything is intrinsic
basic operators very simple (super parse)
great flows for small meshes!

computationally efficient even on coarse mesh
no need for millions of vortex particles
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Channel
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Smoking Bunny

7k vertices, 32k tets; 0.45s 
per frame on PIV (3GHz)
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Merging Vortices
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Movie
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Take-Home Message
Don’t Discretize your PDE

discretize its geometric structures
PDEs often hide these structures

uncover the nature of the variables involved
usually, natural locations on mesh

turn the crank….

Next
circles may be the right discrete geometry!

conformal geometry


