Discrete Differential Fluids

An Application of Discrete Differential Modeling to Fluid Mechanics
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Overview

Fluids, fluids, fluids
® geometric interpretation of classical models
m discrete geometric interpretation
> new integration technique
Bigger Picture:
Discrete Differential Modeling
m don’t discretize your PDEs

® uncover their inherent geometry
m then discretize this geometry
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Fluid Models (1)

Euler Equations

ou
p=const] Xy V)u=-v5+
V-u =0 padLiores

® inviscid fluids (not viscous)
® incompressible
® non-linear PDE, with linear constraint
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Fluid Models (II)

Navier-Stokes Equations

au
Ziu-Vu=-Vp+f —vAu
(U-V)u p V

V-u=0

m only change: viscosity
> coefficient v
m Joss of total energy during motion
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Algorithm for Simulation

One of many possibilities... (see CED lit.)
“Stable Fluids” (Stam 99)
m adapted for graphics needs
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m regular Fulerian discretization “z(,t‘) c R%
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Implementation Issues

Advection
m discretize? Nah... [At(u-V)u}g->

> non-linear and nasty

® method of characteristics i

» parcels transported along velocity...

> let’s go backwards in time

: « " . ;
- to know where a “parcel” is coming from 7

- need to interpolate velocities

- and resample them

» unconditional stability! (large time step) .

Discrete Differential Geometry: An Applied Introduction
ACM SIGGRAPH 2005 Course




What Where?
Co-located grids

m velocities & pressures at vertices

centered Agij=V-uj;
i *
differences Ui — Vi

m staggered grids o q
E] ottt
works MUCH better|—
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Geometry Revealed ~ © v vi- v

Pressure disappears when we take the curl:
870) + £,0 o=V xu (vorticity)
1
dzv(u) =0 ul[ oD
m vorticity measures the “spin” of a parcel
i

t)
m vorticity is “advected” along the flow G

m the circulation around any

clos¢dloop is constant I |
as it gets advected O
- known as Kelvin’s theorem b

- callit preserv. of angular momentum if you want
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The Geometry of Fluids

Euler equations seem clear
m advection + div-free projection ad infinitum
» numerous follow-up work (Fedkiw et al.)
® but what does it mean, geometrically?
> “total energy” is rather unintuitive
> is there a notion of momentum preservation?

Yes
m but of course, we need to massage the PDE
B 50 as to reveal the geometric structure
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Geometry Revealed

So we know:
Integral of vorticity constant on an advected
sheet
Additionally, @ defines u
> if we ignore complex topology for a moment
> U= Vx (Al®) because U is divergence free!

Vorticity is the only real variable here

and Kelvin’s is a defining property
(Navier-Stokes: loss along the way)
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Towards a Proper Discretization

Domain discretization = simplicial complex
m fluxes through faces for velocity
> intrinsic (coordinate-free) and eulerian
» reminiscent of staggered grids...
m net flux for divergence
- what comes in..must come out
m flux spin for vorticity
» Torque created on a “paddle wheel”

®m valid for any grid...
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Enter Discrete Exterior Calculus

Need for proper link btw flux, vorticity, div

= hopefully matching differential counterparts
m to create a discrete differential structure

> ie., structure-preserving discretization
m Fortunately, that's DEC

» we know how to do all that, right??

> flux = 2-form

> div = exterior derivative of flux

> curl = *d* of flux
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Divergence Operator

Curl Operator
Simply d of 2-form Curl requires going to the dual
® summing face values of tets ® from faces to dual edges first
® returning values in tets ® then d (sum of dual edge values)
>
m then back onto primal edges
pointhased V. edge-based VX facebased Ve cell-based pointbased V. edge-based V X facebased Ve cell-based
scalar field vector field vector field scalar field scalar field ‘vector field ~ vector field scalar field
. R
cell-based V. facebased Vx  edge-based V  point-based cell-based V. - face-based Vx  edgebased
scalar field <= vector field <+ vector field <+ scalar field scalar field <= vector field
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point-based
~+— vector field <_ scalar field
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Laplacian Operator

Wait, sum of second partial derivatives
on a PWL field??

m sure, we do it all the time

> link to FE/weak formulation

B yes

edge-based

“yowll get the cot formula..

Vx

Gradient Operator (for completeness)

’\ Try it for O-forms at home:
How does it work here? A=dxdx + xd=d
Boint-based v
—

® but can be stored as values
on edges, as announced
u= z U; ¢;
V. cell-based :
vector field scalar field
Ceg
* * I* AN :>dU=ZUid§0|
cell-based V. facebased Vx  edge-based V  point-based
scalar field <= vector field <= vector field <+ scalar field
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uj)(pek
e ={i.j}

Uy

Wiait, constant per tet, right? (FEM 101)

Integrating Equations of Motion

We have all the computational set-up

® But how do we integrate the motion?

Discrete Kelvin’s Theorem
Simple way to integrate Fuler equations
o ' ® For each I-simplex
Through preserving important structures?

m Circulation/vorticity preservation
® Crucial for visual impact S' )

> volutes in smoke |

> vortices in liquids

h
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> backtrack local loop

in current velocity field

~

> deduce new circulation

|
1

- ie, new discrete vorticity ,l __."F > 'r},'.
® Find new velocity field *-— Zon Sam
> simple Poisson equation

- u=Vx(Alw)

%
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Discrete Kelvin’s Theorem

Guarantees circulation preservation
: 7
for any discrete loop {.:'_ I
® big loop = union of small ones Y Y
® ... even on curved spaces =y

y
)
¥

a— =50 ’ﬁ\
~ O =
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Results

New method
m exact discrete vorticity preservation

m arbitrary simplicial meshes
> see also paper by Feldman et al. this year

m everything is intrinsic

m basic operators very simple (super parse)

m great flows for small meshes!
» computationally efficient even on coarse mesh
> no need for millions of vortex particles
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Channel
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Smoking Bunny

)

7k vertices, 32k tets; 0.45s
per frame on PIV (3GHz)
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Merging Vortices

time {seconds
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Movie

Discrete, Circulation-Preserving,

and Stable Simplicial Fluids
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Take-Home Message

Don’t Discretize your PDE
m discretize its geometric structures
» PDEs often hide these structures
® uncover the nature of the variables involved
> usually, natural locations on mesh
® turn the crank....

Next
m circles may be the right discrete geometry!

> conformal geometry
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