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Preface

The behavior of physical systems is typically described by a set
of continuous equations using tools such as geometric mechanics
and differential geometry to analyze and capture their properties.
For purposes of computation one must derive discrete (in space and
time) representations of the underlying equations. Researchers in
a variety of areas have discovered that theories, which are discrete
from the start, and have key geometric properties built into their
discrete description can often more readily yield robust numerical
simulations which are true to the underlying continuous systems:
they exactly preserve invariants of the continuous systems in the
discrete computational realm.

This volume documents the full day course Discrete Differential Ge-
ometry: An Applied Introduction at SIGGRAPH ’06 on 30 July
2006. These notes supplement the lectures given by Mathieu Des-
brun, Eitan Grinspun, Konrad Polthier, Peter Schröder, and Ari
Stern. These notes include contributions by Miklos Bergou, Alexan-
der I. Bobenko, Sharif Elcott, Matthew Fisher, David Harmon, Eva
Kanso, Markus Schmies, Adrian Secord, Boris Springborn, Ari
Stern, John M. Sullivan, Yiying Tong, Max Wardetzky, and Denis
Zorin, and build on the ideas of many others.

A chapter-by-chapter synopsis

The course notes are organized similarly to the lectures. We in-
troduce discrete differential geometry in the context of discrete
curves and curvature (Chapter 1). The overarching themes intro-
duced here, convergence and structure preservation, make repeated
appearances throughout the entire volume. We ask the question
of which quantities one should measure on a discrete object such
as a triangle mesh, and how one should define such measurements
(Chapter 2). This exploration yields a host of measurements such as
length, area, mean curvature, etc., and these in turn form the basis
for various applications described later on. We conclude the intro-
duction with a summary of curvature measures for discrete surfaces
(Chapter 3).

The discussion of immersed surfaces paves the way for a discrete
treatment of thin-shell mechanics (Chapter 4), and more generally
of isometric curvature energies, with applications to fast cloth sim-
ulation and Willmore flow (Chapter 5). Continuing with the theme
of discrete surfaces, we define straightest geodesics on polyhedral
surfaces with applications to integration of vector fields (Chapter
6).

At this point we shift down to explore the low-level approach of
discrete exterior calculus: after an overview of the field (Chapter
7), we lay out the simple tools for implementing DEC (Chapter 8).
With this in place, numerically robust and efficient simulations of
the Navier-Stokes equations of fluids become possible (Chapter 9).

Simulations of thin-shells, cloth, and fluids, and geometric mod-
eling problems such as fairing and parametrization, require robust
numerical treatment in both space and time: we describe the in-
trinsic Laplace-Beltrami operator, which satisfies a local maximum
principle and leads to better conditioned linear systems (Chapter
10), and we overview the variational time integrators offered by the
geometric mechanics paradigm (Chapter 11).

Eitan Grinspun
with Mathieu Desbrun, Konrad Polthier, and Peter Schröder
11 May 2006
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Chapter 1:
Introduction to Discrete Differential Geometry:

The Geometry of Plane Curves

Eitan Grinspun
Columbia University

Adrian Secord
New York University

1 Introduction

The nascent field of discrete differential geometry deals with
discrete geometric objects (such as polygons) which act as
analogues to continuous geometric objects (such as curves).
The discrete objects can be measured (length, area) and
can interact with other discrete objects (collision/response).
From a computational standpoint, the discrete objects are
attractive, because they have been designed from the ground
up with data-structures and algorithms in mind. From a
mathematical standpoint, they present a great challenge:
the discrete objects should have properties which are ana-
logues of the properties of continuous objects. One impor-
tant property of curves and surfaces is their curvature, which
plays a significant role in many application areas (see, e.g.,
Chapters 4 and 5). In the continuous domain there are re-
markable theorems dealing with curvature; a key require-
ment for a discrete curve with discrete curvature is that it
satisfies analogous theorems. In this chapter we examine the
curvature of continuous and discrete curves on the plane.

The notes in this chapter draw from a lecture given by
John Sullivan in May 2004 at Oberwolfach, and from the
writings of David Hilbert in his book Geometry and the
Imagination.

2 Geometry of the Plane Curve

Consider a plane curve, in particular a small piece
of curve which does not cross itself (a simple curve).

P

Q

Choose two points, P and Q,
on this curve and connect them
with a straight line: a secant.
Fixing P as the “hinge,” ro-
tate the secant about P so
that Q slides along the curve
toward Q. If the curve is
sufficiently smooth (“tangent-
continuous at P”) then the se-

cant approaches a definite line: the tangent. Of all the
straight lines passing through P , the tangent is the best
approximation to the curve. Consequently we define the di-
rection of the curve at P to be the direction of the tangent,
so that if two curves intersect at a point P their angle of
intersection is given by the angle formed by their tangents
at P . If both curves have identical tangents at P then we
say “the curves are tangent at P .” Returning to our sin-
gle curve, the line perpendicular to the tangent and passing
through P is called the normal to the curve at P . Together
the tangent and normal form the axes of a local rectangular
coordinate system. In addition, the tangent can be thought
of as a local approximation to the curve at P .

A better approximation than the tangent is the circle of
curvature: consider a circle through P and two neighboring
points on the curve, and slide the neighboring points towards

P

Figure 1: The family of tangent circles to the curve at point
P . The circle of curvature is the only one crossing the curve
at P .

P . If the curve is sufficiently smooth (“curvature-continuous
at P”) then the circle thus approaches a definite position
known as the circle of curvature or osculating circle; the
center and radius of the osculating circle are the center of
curvature and radius of curvature associated to point P on
the curve. The inverse of the radius is κ, the curvature of
the curve at P .

If we also consider a sense of traversal along the curve
segment (think of adding an arrowhead at one end of the
segment) then we may measure the signed curvature, iden-
tical in magnitude to the curvature, but negative in sign
whenever the curve is turning clockwise (think of riding a
bicycle along the curve: when we turn to the right, it is
because the center of curvature lies to the right, and the
curvature is negative).

Another way to define the circle of curvature is by con-
sidering the infinite family of circles which are tangent to
the curve at P (see Figure 1). Every point on the normal
to the curve at P serves as the center for one circle in this
family. In a small neighborhood around P the curve divides
the plane into two sides. Every circle (but one!) in our fam-
ily lies entirely in one side or the other. Only the circle of
curvature however spans both sides, crossing the curve at P .
It divides the family of tangent circles into two sets: those
with radius smaller than the radius of curvature lying on one
side, and those with greater radius lying on the other side.
There may exist special points on the curve at which the
circle of curvature does not locally cross the curve, and in
general these are finite and isolated points where the curve
has a (local) axis of symmetry (there are four such points on
an ellipse). However on a circle, or a circular arc, the special
points are infinitely many and not isolated.

That the circle of curvature crosses the curve may be rea-
soned by various arguments. As we traverse the curve past
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Figure 2: The Gauss map assigns to every point on the curve
a corresponding point on the unit circle.

point P , the curvature is typically either increasing or de-
creasing, so that in the local neighborhood of P , so that
the osculating circle in comparison to the curve will have
a higher curvature on one side and lower on the other. An
alternative argument considers our three point construction.
Trace along a circle passing through three consecutive points
on the curve to observe that the circle must pass from side
A to side B on the first point, B to A on the second, and A
to B on the third. Similar reasoning of our two-point con-
struction shows that in general the tangent does not cross
the curve—the isolated exceptions are the points of inflec-
tion, where the radius of curvature is infinite and the circle
of curvature is identical to the tangent.

Informally we say that P , the tangent at P , and the oscu-
lating circle at P have one, two, and three coincident points
in common with the curve, respectively. Each construction
in sequence considers an additional approaching point in the
neighborhood of P and the so-called order of approximation
(0, 1, and 2 respectively) is identical to the number of addi-
tional points.

In 1825 Karl F. Gauss introduced a new tool for thinking
about the shape of curves and surfaces. Begin by fixing a
sense of traversal for the curve, naturally inducing for every
point on the curve a direction for the tangent. By conven-
tion, the normal points a quarter turn counterclockwise from
tangent direction. Gauss’s idea is to draw a unit circle on
the plane of the curve, and for any point on the curve, to
represent the normal by the radius of the circle parallel to
the normal and having the same sense as the normal. To any
point P on the curve, the Gauss map assigns a point Q on
the unit circle, namely the point where the radius meets the
circle (here, radius means the line segment from the center
of the circle to a point on the circumference). Observe that
the normal at P is parallel to the radius of the circle, and the
tangent to the curve at P is parallel to the tangent to the cir-
cle at Q. That the tangent at P and Q are parallel is used to
simplify important definitions in differential geometry (see,
e.g., the definition of the shape operator in the chapter on
discrete shells). While the Gauss map assigns exactly one
point on the unit circle to any point on the curve, there may
be multiple points on the curve that map to the same point
on the circle, i.e.the map is not one-to-one.

Consider the image of the curve under the Gauss map:
the Gaussian image of a curve is the union of all points
on the unit circle corresponding to all points on the given
curve. For an open curve, the Gaussian image may be an
arc or may be the unit circle. Consider a closed simple plane

+1 -1 +2 0

Figure 3: Turning numbers of various closed curves. Top
row: Two simple curves with opposite sense of traversal,
and two self-intersecting curves, one of which “undoes” the
turn. Bottom row: Gaussian image of the curves, and the
associated turning numbers.

curve: the image is always the unit circle. If we allow the
closed curve to intersect itself, we can count how many times
the image completely “wraps around” the unit circle (and in
which sense): this is the turning number or the index of
rotation, denoted k. It is unity for a simple closed curve
traversed counterclockwise. It is zero or ±2 for curve that
self-intersects once, depending on the sense of traversal and
on whether or not the winding is “undone.”

Turning Number Theorem. An old and well-known
fact about curves is that the integral of signed curvature over
a closed curve, Ω, is dependent only on the turning number:

Ω

κ ds = 2πk .

No matter how much we wiggle and bend the curve, if we
do not change its turning number we do not change its to-
tal signed curvature1. To change the total signed curvature
of Ω we are forced to alter its turning number by adjusting
the curve to introduce (or rearrange) self-intersecting loops.
This theorem about the significance of the turning number
is a piece of mathematical structure: together all the struc-
ture we discover embodies our understanding of differential
geometry. Consequently, our computational algorithms will
take advantage of this structure. In computing with dis-
crete approximations of continuous geometry, we will strive
to keep key pieces of structure intact.

3 Geometry of the Discrete Plane Curve

Given a curve, r, approximate it drawing an in-
scribed polygon p: a finite sequence of (point)
vertices, V1, V2, . . . Vn,
ordered by a traversal
of the curve, and line
segments connecting
successive vertices2.

1Beware that in the context of space curves, the phrase “total
curvature” is occasionally used to denote the Pythagorean sum
of torsion and curvature—a pointwise quantity like curvature. In
contrast, here we mean the integral of curvature over the curve.

2While we concern ourselves here only with plane curves, this
treatment may be extended to curves in a higher-dimensional am-
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The length of the inscribed polygon is given by

len(p) =
n

i=0

d(Vi, Vi+1) ,

where d(·, ·) measures the euclidean distance3 between two
points. We find the length of the continuous curve by taking
the supremum over all possible inscriptions:

len(r) = sup
p inscribed in r

len(p) .

Next, choose a sense of traversal along the curve, naturally
inducing a sense for the inscribed polygon. The (discrete)
total signed curvature of the inscribed polygon is given by

tsc(p) =
n

i=0

αi ,

where αi is the signed turning angle at vertex Vi, measured
in the sense that a clockwise turn has negative sign; if p
is open then α0 = αn = 0. (N.B.: the turning angle is a
local quantity at each vertex, whereas the turning number
is a global quantity of a curve—these are two distinct con-
cepts). Again, we may express the total signed curvature
of the continuous curve by taking the supremum over all
possible inscribed polygons:

tsc(r) = sup
p inscribed in r

tsc(p) .

A definition based on suprema serves as an elegant foun-
dation for defining the (integral quantities) length and total
curvature of a smooth curve using only very simple polyg-
onal geometry; however suprema are typically is not well
suited for computation. For an equivalent, computationally
meaningful definition, we construct an infinite sequence of
inscribed polygons, p1, p2, p3, . . ., that approaches the po-
sition of r; analogous definitions of len(r) and tsc(r) are
formulated as limits of measurements over elements of the
sequence.

To clarify what we mean by “the inscribed polygon p ap-
proaches the position of r,” define the geometric mesh size
of p by the length of its longest line segment:

h(p) = max
0≤i<n

d(Vi, Vi+1) .

Suppose that r is a smooth simple curve. By smooth we
mean that every point on the curve has a unique well-
defined tangent4. Then one can show that given a sequence
p1, p2, p3, . . . such that h(pi) vanishes in the limit of the se-
quence, then len(pi) approaches len(r). An analogous state-
ment holds for total curvature, as summarized by the follow-
ing statement:5

bient space, Mm ⊆ Rd, by replacing line segments with shortest
geodesics in this definition, and straight-line distance by length
of geodesic in subsequent definitions.

3It measures distance using the metric of the ambient space,
in our case R2.

4Observe that smoothness here is in a purely geometric sense—
the notion of parametric smoothness in the context of parameter-
ized curves is a different matter altogether.

5Note that there are sequences of pathological polygons whose
mesh size vanishes yet the limit of the sequence does not approach
the curve. For example, if the curve is a circle, consider a poly-
gon whose vertices all cluster about a single point of the circle.

Figure 4: The discrete Gauss map assigns to every edge of
the polygon a corresponding point on the unit circle, and to
every vertex of the polygon a corresponding arc on the unit
circle.

Convergence. A key recurring theme in discrete differ-
ential geometry is the convergence of a measurement taken
over a sequence of discrete objects each better approximat-
ing a particular smooth object. In the case of a plane curve,
a sequence of inscribed polygons, each closer in position to
the curve, generates a sequence of measurements that ap-
proach that of the curve:

len(r) = lim
h(pi)→0

len(pi) ,

tsc(r) = lim
h(pi)→0

tsc(pi) .

Establishing convergence is a key step towards numerical
computations which use discrete objects as approximations
to continuous counterparts. Indeed, one might argue that
the notion of continuous counterpart is only meaningful in
the context of established convergence. Put simply, if we
choose an inscribed polygon as our discrete analogue of a
curve, then as the position of the approximating polygon
approaches the curve, the measurements taken on the ap-
proximant should approach those of the underlying curve.

Next, consider the tangents, normals, and Gaussian im-
age of a closed polygon p. Repeating the two-point limiting
process we used to define the tangent for a point on the
curve, we observe that every vertex of the polygon has two
limiting tangents (thus two normals), depending on the di-
rection from which the limit is taken (see Figure 4). De-
fine the Gaussian image of p by assigning to every vertex
Vi the arc on the unit circle whose endpoints are the two
limiting normals and whose signed angle equals the signed
turning angle αi, i.e., as if one “smoothly interpolated” the
two normals in the Gaussian image. Every point on the
polygon away from the vertices has a unique normal which
corresponds in the Gaussian image to the meeting point of
consecutive arcs. The sense of traversal along the polygon
induces a natural sense of traversal along the arcs of the
Gaussian image. With this construction in place, our def-
inition of turning number for a smooth plane curve carries
over naturally to the setting of closed polygons. Not that
for for open polygons, the Gaussian image of vertices at the
endpoints is a point on the unit circle (a degenerate arc).

As long as the length of the longest line segment shrinks, i.e.
the polygon clusters more tightly around the point, then this se-
quence of polygons will satisfy our definition but will clearly not
converge to a circle. One may introduce stronger requirements on
the polygon sequence to exclude such pathological sequences.
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Structure preservation. Does the Turning Number
Theorem hold for discrete curves? Yes. Recall that the
sum of exterior angles of a simple closed polygon is 2π. This
observation may be generalized to show that tsc(p) = 2πk
where k is the turning number of the polygon. We stress a
key point: the Turning Number Theorem is not a claim that
the total signed curvature converges to a multiple of 2π in
the limit of a finely refined inscribed polygon. The Turning
Number Theorem is preserved exactly and it holds for any
(arbitrarily coarse) closed polygon. Note, however, that the
turning number of an inscribed polygon may not match that
of the smooth curve, at least until sufficiently many vertices
are added (in the right places) to capture the topology of
the curve.

4 Parameterization of the Plane Curve

So far in our exploration of curves our arguments have
never explicitly made reference to a system of coordinates.
This was to stress the point that the geometry (or shape)
of the curve can be described without reference to coor-
dinates. Nevertheless, the idea of parameterizing a curve
occurs throughout applied mathematics. Unfortunately, pa-
rameterization can sometimes obscure geometric insight. At
the same time, it is an exceedingly useful computational tool,
and as such we complete our exploration of curves with this
topic.

In working with curves it is useful to be able to indicate
particular points and their neighborhoods on the curve. To
that end we parameterize a curve over a real interval map-
ping each parameter point, t ∈ [0, a], to a point R(t) on the
plane:

R : [0, a] → R2 .

Thus the endpoints of finite open curve are R(0) and R(a);
for closed curves we require R(0) = R(a).

The parameterization of a curve is not unique. Besides the
geometric information encoded in the image of R, the para-
meterization also encodes a parameterization-dependent ve-
locity. To visualize this, observe that moving the parameter
at unit velocity slides a point R(t) along the curve: the rate
of change of R(t), or velocity, is the vector $v(t) = d

dtR(t).
Indeed, given any strictly increasing function t(s) : [0, b] →
[0, a] we reparameterize the curve as R(t(s)) so that moving
along s ∈ [0, b] generates the same points along the curve; the
geometry remains the same, but by chain rule of the calculus
the velocity is now $v(s) = d

dsR(t(s)) = d
dtR(t(s)) d

ds t(s): at
every point the R(t(s)) reparameterization scales the veloc-
ity by d

ds t(s).
Given a parameterized curve there is a unique reparame-

terization, R̂(s) = R(t(s)), with the property that ‖$v(s)‖ =
1, s ∈ [0, b]. In arc-length parameterization of a curve, unit
motion along the parameter s corresponds to unit motion
along the length of the curve. Consequently, s is the length
traveled along the curve walking from R̂(0) to R̂(s), there-
fore b is the length of the entire curve.

In the special setting of an arc-length parameterization
the curvature at a point R(s) is identical to the second deriv-

ative d2

ds2 R(s). It is a grave error to identify curvatures with
second derivatives in general. The former is a geometric
quantity only, and we defined it without reference to a para-
meterization; the latter encodes both geometry and velocity,
and is parameterization-dependent. Here a spaceship anal-
ogy is helpful. If a spaceship travels at unit speed along a
curved path, the curvature give the acceleration of the space-
ship. Now if the spaceship travels at a nonuniform velocity

along the path, then part of the acceleration is due to cur-
vature, and part is due to speeding up and slowing down.
A parameterization encodes velocity—this can be extremely
useful for some applications.

Parameterization enables us to reformulate our statement
of convergence. Given a sequence of parameter values, 0 =
t1 ≤ t2 . . . ≤ tn−1 ≤ tn = b, for a “sufficiently well-behaved”
parameterization of a “sufficiently well-behaved” curve6, we
may form an inscribed polygon taking Vi = R(ti). Then the
parametric mesh size of the inscribed polygon is the greatest
of all parameter intervals [ti, ti + 1]:

hR(p) = max
i

(ti+1 − ti) .

Unlike geometric mesh size, parametric mesh size is depen-
dent on the chosen parameterization.

As before, consider a sequence of inscribed polygons, each
sampling the curve at more parameter points, and in the
limit sampling the curve at all parameter points: the as-
sociated sequences of discrete measurements approach their
continuous analogs:

len(r) = lim
hR(pi)→0

len(pi) ,

tsc(r) = lim
hR(pi)→0

tsc(pi) .

5 Conclusion and Overview

So far we have looked at the geometry of a plane curve and
demonstrated that it is possible to define its discrete ana-
logue. The formulas for length and curvature of a discrete
curve (a polygon) are immediately amenable to computa-
tion. Convergence guarantees that in the presence of abun-
dant computational resources we may refine our discrete
curve until the measurements we take match to arbitrary
precision their counterparts on a smooth curve. We dis-
cussed an example of structure preservation, namely that the
Turning Number Theorem holds exactly for discrete curves,
even for coarse mesh sizes. If we wrote an algorithm whose
correctness relied on the Turning Number Theorem, then
the algorithm could be applied to our discrete curve.

The following chapters will extend our exploration of dis-
crete analogues of the objects of differential geometry to the
settings of surfaces and volumes and to application areas
spanning physical simulation (thin shells and fluids) and
geometric modeling (remeshing and parameterization). In
each application area algorithms make use of mathemat-
ical structures that are carried over from the continuous
to the discrete realm. We are not interested in preserv-
ing structure just for mathematical elegance—each applica-
tion demonstrates that by carrying over the right structures
from the continuous to the discrete setting, the resulting
algorithms exhibit impressive computational and numerical
performance.

6Indeed, the following theorems depend on the parameteriza-
tion being Lipschitz, meaning that small changes in parameter
value lead to small motions along the curve:

d(R(a), R(b)) ≤ C|a− b| ,

for some constant C. The existence of a Lipschitz parameteriza-
tion is equivalent to the curve being rectifiable, or having finite
arclength. Further care must be taken in allowing non-continuous
curves with finitely many isolated jump points.
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What Can We Measure?
Peter Schröder

Caltech

1 Introduction

When characterizing a shape or changes in shape we must first
ask, what can we measure about a shape? For example, for
a region in R3 we may ask for its volume or its surface area.
If the object at hand undergoes deformation due to forces act-
ing on it we may need to formulate the laws governing the
change in shape in terms of measurable quantities and their
change over time. Usually such measurable quantities for a
shape are defined with the help of integral calculus and often
require some amount of smoothness on the object to be well
defined. In this chapter we will take a more abstract approach
to the question of measurable quantities which will allow us
to define notions such as mean curvature integrals and the cur-
vature tensor for piecewise linear meshes without having to
worry about the meaning of second derivatives in settings in
which they do not exist. In fact in this chapter we will give
an account of a classical result due to Hadwiger [Hadwiger
1957], which shows that for a convex, compact set in Rn there
are only n + 1 independent measurements if we require that
the measurements be invariant under Euclidean motions (and
satisfy certain “sanity” conditions). We will see how these
measurements are constructed in a very straightforward and
elementary manner and that they can be read off from a char-
acteristic polynomial due to Steiner [Steiner 1840]. This poly-
nomial describes the volume of a family of shapes which arise
when we “grow” a given shape. As a practical tool arising
from these consideration we will see that there is a well defined
notion of the curvature tensor for piecewise linear meshes and
we will see very simple formulæfor quantities needed in phys-
ical simulation with piecewise linear meshes. Much of the
treatment here will be limited to convex bodies to keep things
simple.

The treatment in this chapter draws heavily upon work
by Gian-Carlo Rota and Daniel Klein, Hadwigers pioneering
work, and some recent work by David Cohen-Steiner and col-
leagues.

2 Geometric Measures

To begin with let us define what we mean by a measure. A
measure is a function µ defined on a family of subsets of some
set S, and it takes on real values: µ : L → R. Here L denotes
this family of subsets and we require of L that it is closed
under finite set union and intersection as well as that it contains
the empty set, ∅ ∈ L. The measure µ must satisfy two axioms:
(1) µ(∅) = 0; and (2) µ(A∪B) = µ(A)+µ(B)−µ(A∩B)
whenever A and B are measurable. The first axiom is required
to get anything that has a hope of being well defined. If µ(∅)
was not equal to zero the measure of some set µ(A) = µ(A∪
∅) = µ(A) + µ(∅) could not be defined. The second axiom
captures the idea that the measure of the union of two sets
should be the sum of the measures minus the measure of their
overlap. For example, consider the volume of the union of two

sets which clearly has this property. It will also turn out that
the additivity property is the key to reducing measurements
for complicated sets to measurements on simple sets. We will
furthermore require that all measures we consider be invariant
under Euclidean motions, i.e., translations and rotations. This
is so that our measurements do not depend on where we place
the coordinate origin and how we orient the coordinate axes.
A measure which depended on these wouldn’t be very useful.

Let’s see some examples. A well known example of such a
measure is the volume of bodies in R3. Clearly the volume of
the empty body is zero and the volume satisfies the additivity
axiom. The volume also does not depend on where the coordi-
nate origin is placed and how the coordinate frame is rotated.
To uniquely tie down the volume there is one final ambiguity
due to the units of measurement being used, which we must re-
move. To this end we enforce a normalization which states that
the volume of the unit, coordinate axis-aligned parallelepiped
in Rn be one. With this we get

µn
n(x1, . . . , xn) = x1 · . . . · xn

for x1 to xn the side lengths of a given axis-aligned paral-
lelepiped. The superscript n denotes this as a measure on Rn,
while the subscript denotes the type of measurement being
taken. Consider now a translation of such a parallelepiped.
Since such a transformation does not change the side lengths
µn is translation invariant. The same applies to a rotation
of such a parallelepiped. Overall we say that this measure
is rigid motion invariant. Notice that we have only defined
the meaning of µn

n for axis-aligned parallelepipeds as well as
finite unions and intersections of such parallelepipeds. The
definition can be extended to more general bodies through a
limiting process akin to how Riemann integration fills the do-
main with ever smaller boxes to approach the entire domain
in the limit. There is nothing here that prevents us from per-
forming the same limit process. In fact we will see later that
once we add this final requirement, that the measure is contin-
uous in the limit, the class of such measures is completely tied
down. This is Hadwiger’s famous theorem. But, more on that
later.

Of course the next question is, are there other such invariant
measures? Here is a proposal:

µn
n−1(x1, . . . , xn) =

x1x2 + x1x3 + . . . + x1xn + x2x3 + . . . + x2xn . . .

For an axis-aligned parallelepiped in R3 we’d get

µ3
2(x1, x2, x3) = x1x2 + x2x3 + x3x1

which is just half the surface area of the parallelepiped with
sides x1, x2, and x3. Since we have the additivity property
we can certainly extend this definition to more general bodies
through a limiting process and find that we get, up to normal-
ization, the surface area.
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Continuing in this fashion we are next led to consider

µ3
1(x1, x2, x3) = x1 + x2 + x3

(and similarly for µn
1 ). For a parallelepiped this function mea-

sures one quarter the sum of lengths of its bounding edges.
Once again this new measure is rigid motion invariant since
the side lengths x1, x2 and x3 do not change under a rigid
motion. What we need to check is whether it satisfies the ad-
ditivity theorem. Indeed it does, which is easily checked for
the union of two axis-aligned parallelepipeds if the result is
another axis-aligned parallelepiped. What is less clear is what
this measure represents if we extend it to more general shapes
where the notion of “sum of edge lengths” is not clear. The
resulting continuous measure is sometimes referred to as the
mean width.

From these simple examples we can see a pattern. For Eu-
clidean n-space we can use the elementary symmetric polyno-
mials in edge lengths to define n invariant measures

µn
k (x1, . . . , xn) =

∑
1≤i1<i2<...<ik≤n

xi1xi2 . . . xik

for k = 1, . . . , n for parallelepipeds. To extend this defini-
tion to more general bodies as alluded to above, we’ll follow
ideas from geometric probability. In particular we will extend
these measures to the ring of compact convex bodies, i.e., fi-
nite unions and intersections of compact convex sets in Rn.

3 How Many Points, Lines, Planes,...
Hit a Body?

Consider a compact convex set, a convex body, in Rn and sur-
round it by a box. One way to measure its volume is to count
the number of points that, when randomly thrown into the box,
hit the body versus those that hit empty space inside the box.
To generalize this idea we consider affine subspaces of dimen-
sion k < n in Rn. Recall that an affine subspace of dimension
k is spanned by k + 1 points pi ∈ Rn (in general position),
i.e., the space consists of all points q which can be written as
affine combinations q =

∑
i αipi, with

∑
i αi = 1. Such an

affine subspace is simply a linear subspace translated, i.e., it
does not necessarily go through the origin. For example, for
k = 1, n = 3 we will consider all lines—a line being the
set of points one can generate as affine combinations of two
points on the line—in three space. Let’s denote the measure
of all lines going through a rectangle R in R3 as λ3

1(R). The
claim is that

λ3
1(R) = cµ3

2(R),

i.e., the measure of all lines which meet the rectangle is pro-
portional to the area of the rectangle. To see this, note that a
given line (in general position) either meets the rectangle once
or not at all. Conversely for a given point in the rectangle there
is a whole set of lines—a sphere’s worth—which “pierce” the
rectangle in the given point. The measure of those lines is
proportional to the area of the unit sphere. Since this is true
for all points in the rectangle we see that the total measure of
all such lines must be proportional to the area of the rectangle
with a constant of proportionality depending on the measure
of the sphere. For now such constants are irrelevant for our
considerations so we will just set them to unity. Given a more
complicated shape C in a plane nothing prevents us from per-
forming a limiting process and we see that the measure of lines

meeting C is
λ3

1(C) = µ3
2(C),

i.e., it is proportional to the area of the region C. Given a union
of rectangles D = ∪iRi, each living in a different plane, we
get ∫

XD(ω) dλ3
1(ω) =

∑
i

µ3
2(Ri).

Here XD(ω) counts the number of times a line ω meets the set
D and the integration is performed over all lines. Going to the
limit we find for any convex body E a measure proportional
to its surface area∫

XE(ω) dλ3
1(ω) = µ3

2(E).

Using planes (k = 2) we can now generalize the mean
width. For a straight line segment c ∈ R3 we find λ3

2(c) =
µ3

1(c) = l(c), i.e., the measure of all planes that meet the
straight line segment is proportional—as before we set the
constant of proportionality to unity—to the length of the line
segment. The argument mimics what we said above: a plane
either meets the line once or not at all. For a given point on the
line there is once again a whole set of planes going through
that point. Considering the normals to such planes we see that
this set of planes is proportional in measure to the unit sphere
without being more precise about the actual constant of pro-
portionality. Once again this can be generalized with a limiting
process giving us the measure of all planes hitting an arbitrary
curve in space as proportional to its length∫

XF (ω) dλ3
2(ω) = µ3

1(F ).

Here the integration is performed over all planes ω ∈ R3,
and XF counts the number of times a given plane touches the
curve F .

It is easy to see that this way of measuring recovers the
perimeter of a parallelepiped as we had defined it before

λ3
2(P ) = µ3

1(P ).

To see this consider the integration over all planes but taken
in groups. With the parallelepiped having one corner at
the origin—and being axis-aligned—first consider all planes
whose normal (nx, ny, nz) has all non-negative entries (i.e.,
the normal points into the positive octant). Now consider a se-
quence of three edges of P , connected at their endpoints, go-
ing from one corner to its opposing corner. For example, first
traversing an edge parallel to the first coordinate axis, then an
edge parallel to the second coordinate axis and finally an edge
parallel to the third coordinate axis. The total length of this
curve will be the sum of lengths of the three segments (x1, x2

and x3 respectively). Given a plane with normal pointing into
the positive octant and meeting the parallelepiped P we see
it must meet our sequence of three edges in exactly one point.
From this it follows that the measure of all such planes is given
by the length of the sequence of edges µ3

1(P ) = x1 +x2 +x3

(up to a constant of proportionality). The same argument holds
for the remaining seven octants giving us the desired result up
to a constant. We can now see that µ3

1(E) for some convex
body E can be written as∫

XE(ω) dλ3
2(ω) = µ3

1(E),
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i.e., the measure of all planes which meet E. With this we
have generalized the notion of perimeter to more general sets.

We have now seen n different Euclidean motion invariant
measures µn

k (C), given as the measure of all affine subspaces
of dimension n−k meeting C ⊂ Rn for k = 1, . . . , n. These
measures are called the intrinsic volumes. Clearly any linear
combination of these measures is also rigid motion invariant.
It is natural to wonder then whether these linear combinations
generate all such measures. It turns out there is one final mea-
sure missing in our basis set of measures before we arrive at
Hadwiger’s theorem. This measure corresponds to the elemen-
tary symmetric polynomial of order zero

µ0(x1, . . . , xn) =

{
1 n > 0
0 n = 0

This very special measure will turn out to be the Euler char-
acteristic of a convex body which takes on the value 1 on all
non-empty compact convex bodies. To show that everything
works as advertised we use induction on the dimension. In di-
mension n = 1 we consider closed intervals [a, b], a < b. In-
stead of working with the set directly we consider a functional
on the characteristic function f[a,b] of the set which does the
trick

χ1(f) =

∫
R

f(ω)− f(ω+) dω.

Here f(ω+) denotes the right limiting value of f at ω:
limε→0 f(ω + ε), ε > 0. For the set [a, b], f(ω) − f(ω+)
is zero for all ω ∈ R except b since f(b) = 1 and f(b+) = 0.
Now we use induction to deal with higher dimensions. In Rn

take a straight line L and consider the affine subspaces Aω of
dimension n−1 which are orthogonal to L and parameterized
by ω along L. Letting f be the characteristic function of a
convex body in Rn we get

χn(f) =

∫
R

χn−1(fω)− χn−1(fω+) dω.

Here fω is the restriction of f to the affine space Aω or al-
ternatively the characteristic function of the intersection of
Aω and the convex body of interest, while fω+ is defined
as before as the limit of fω from above. With this we define
µn

0 (G) = χn(f) for any finite union of convex bodies G and
f the characteristic function of the set G ∈ Rn.

That this definition of µn
0 amounts to the Euler characteris-

tic is not immediately clear, but it is easy to show, if we con-
vince ourselves that for any non empty convex body C ∈ Rn

µn
0 (Int(C)) = (−1)n.

For n = 1, i.e., the case of open intervals on the real line, this
statement is obviously correct. We can now apply the recursive
definition to the characteristic function of the interior of C and
get

µn
0 (Int(C)) =

∫
ω

χn−1(fω)− χn−1(fω+) dω.

By induction the right hand side is zero except for the first ω at
which Aω ∩ C is non-empty. There χn−1(fω+) = (−1)n−1,
thus proving our assertion for all n.

The Euler-Poincaré formula for a convex polyhedron in R3

|F | − |E|+ |V | = 2

which relates the number of faces, edges, and vertices to one
another now follows easily. Given a convex polyhedron sim-
ply write it as the non-overlapping union of the interiors of all
its cells from dimension n down to dimension 0, where the
interior of a vertex (0-cell) is the vertex itself. Then

µn
0 (P ) =

∑
c∈P

µn
0 (Int(c)) = c0 − c1 + c2 − . . .

where ci equals the number of cells of dimension i. For the
case of a polyhedron in R3 this is exactly the Euler-Poincaré
formula as given above since for n = 3 we have

1 = µ3
0(P ) = c0 − c1 + c2 − c3 = |V | − |E|+ |F | − 1.

4 The Intrinsic Volumes and Had-
wiger’s Theorem

The above machinery can now be used to define the intrinsic
volumes as functions of the Euler characteristic alone for all
finite unions G of convex bodies

µn
k (G) =

∫
µn

0 (G ∩ ω) dλn
n−k(ω).

Here µn
0 (G ∩ ω) plays the role of XG(ω) we used earlier to

count the number of times ω hits G.
There is one final ingredient missing, continuity in the limit.

Suppose Cn is a sequence of convex bodies which converges
to C in the limit as n →∞. Hadwiger’s theorem says that if a
Euclidean motion invariant measure µ of convex bodies in Rn

is continuous in the sense that

lim
Cn→C

µ(Cn) = µ(C)

then µ must be a linear combination of the intrinsic volumes
µn

k , k = 0, . . . , n. In other words, the intrinsic volumes, un-
der the additional assumption of continuity, are the only lin-
early independent, Euclidean motion invariant, additive mea-
sures on finite unions (and intersections) of convex bodies in
Rn.

What does all of this have to do with the applications we
have in mind? A consequence of Hadwiger’s theorem assures
us that if we want to take measurements of piecewise linear
geometry (surface or volume meshes, for example) such mea-
surements should be functions of the intrinsic volumes. This
assumes of course that we are looking for additive measure-
ments which are Euclidean motion invariant and continuous in
the limit. For a triangle for example this would be area, edge
length, and Euler characteristic. Similarly for a tetrahedron
with its volume, surface area, mean width, and Euler charac-
teristic. As the name suggests all of these measurements are
intrinsic, i.e., they can be computed without requiring an em-
bedding. All that is needed is a metric to compute the intrinsic
volumes. Of course in practice the metric is often induced by
an embedding.

5 Steiner’s Formula

We return now to questions of discrete differential geometry
by showing that the intrinsic volumes are intricately linked
to curvature integrals and represent their generalization to
the non-smooth setting. This connection is established by
Steiner’s formula [Steiner 1840].
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Consider a non-empty convex body K ∈ Rn together with
its parallel bodies

Kε = {x ∈ Rn : d(x, K) ≤ ε}

where d(x, K) denotes the Euclidean distance from x to the
set K. In effect Kε is the body K thickened by ε. Steiner’s
formula gives the volume of Kε as a polynomial in ε

V (Kε) =

n∑
j=0

V (Bn−j)Vj(K)εn−j .

Here the Vj(K) correspond to the measures µn
k we have seen

earlier if we let k = n − j. For this formula to be correct the
Vj(K) are normalized so that they compute the j-dimensional
volume when restricted to a j-dimensional subspace of Rn.
(Recall that we ignored normalizations in the definition of the
µn

k .) V (Bk) = πk/2/Γ(1+k/2) denotes the k-volume of the
k-unit ball. In particular we have V (B0) = 1, V (B1) = 2,
V (B2) = π, and V (B3) = 4π/3.

In the case of a polyhedron we can verify Steiner’s formula
“by hand.” Consider a tetrahedron in T ∈ R3 and the vol-
ume of its parallel bodies Tε. For ε = 0 we have the vol-
ume of T itself (V3(T )). The first order term in ε, 2V2(T ), is
controlled by area measures: above each triangle a displace-
ment along the normal creates additional volume proportional
to ε and the area of the triangle. The second order term in
ε, πV1(T ), corresponds to edge lengths and dihedral angles.
Above each edge the parallel bodies form a wedge with radius
ε and opening angle θ, which is the exterior angle of the faces
meeting at that edge. and the length of the edge. The volume
of each such wedge is proportional to edge length, exterior
angle, and ε2. Finally the third order term in ε, 4π/3V0(T ),
corresponds to the volume of the parallel bodies formed over
vertices. Each vertex gives rise to additional volume spanned
by the vertex and a spherical cap above it. The spherical cap
corresponds to a spherical triangle formed by the three inci-
dent triangle normals. The volume of such a spherical wedge
is proportional to its solid angle and ε3.

If we have a convex body with a boundary which is C2 we
can give a different representation of Steiner’s formula. Con-
sider such a convex M ∈ Rn and define the offset function

g(p) = p + t~n(p)

for 0 ≤ t ≤ ε, p ∈ ∂M and ~n(p) the outward normal to M at
p. We can now directly compute the volume of Mε as the sum
of Vn(M) and the volume between the surfaces ∂M and ∂Mε.
The latter can be written as an integral of the determinant of
the Jacobian of g∫

∂M

(∫ ε

0

∣∣∣∣∂g(p)

∂p

∣∣∣∣ dt

)
dp.

Since we have a choice of coordinate frame in which to do
this integration we may assume without loss of generality that
we use principal curvature coordinates on ∂M , i.e., a set of or-
thogonal directions in which the curvature tensor diagonalizes.
In that case∣∣∣∣∂g(p)

∂p

∣∣∣∣ = |I + tK(p)|

=

n−1∏
i=1

(1 + κi(p)t)

=

n−1∑
i=0

µn−1
i (κ1(p), . . . , κn−1(p))ti.

In other words, the determinant of the Jacobian is a polynomial
in t whose coefficients are the elementary symmetric functions
in the principal curvatures. With this substitution we can triv-
ially integrate over the variable t and get

V (Mε) = Vn(M)+
n−1∑
i=0

εi+1

i + 1

∫
∂M

µn−1
i (κ1(p), . . . , κn−1(p)) dp.

Comparing the two versions of Steiner’s formula we see that
the intrinsic volumes generalize curvature integrals. For ex-
ample, for n = 3 and an arbitrary convex body K we get

V (Kε) = 1V3(K) + 2V2(K)ε + πV1(K)ε2 +
4π

3
V0(K)ε3

while for a convex body M with C2 smooth boundary the for-
mula reads as

V (Mε) = V3(M) +∫
∂M

µ2
0(κ1(p), κ2(p))︸ ︷︷ ︸

=1

dp


︸ ︷︷ ︸

=A

ε +

∫
∂M

µ2
1(κ1(p), κ2(p))︸ ︷︷ ︸

=2H

dp

 ε2

2
+

∫
∂M

µ2
2(κ1(p), κ2(p))︸ ︷︷ ︸

=K

dp


︸ ︷︷ ︸

=4π

ε3

3

= V3(M) + ε

∫
∂M

dp + ε2
∫

∂M

H dp +
ε3

3

∫
∂M

K dp.

6 What All This Machinery Tells Us

We began this section by considering the question of what ad-
ditive, continuous, rigid motion invariant measurements there
are for convex bodies in Rn and learned that the n + 1 intrin-
sic volumes are the only ones and any such measure must be
a linear combination of these. We have also seen that the in-
trinsic volumes in a natural way extend the idea of curvature
integrals over the boundary of a smooth body to general con-
vex bodies without regard to a differentiable structure. These
considerations become one possible basis on which to claim
that integrals of Gaussian curvature on a triangle mesh be-
come sums over excess angle at vertices and that integrals of
mean curvature can be identified with sums over edges of di-
hedral angle weighted by edge length. These quantities are al-
ways integrals. Consequently they do not make sense as point-
wise quantities. In the case of smooth geometry we can define
quantities such as mean and Gaussian curvature as pointwise
quantities. On a simplicial mesh they are only defined as inte-
gral quantities.

All this machinery was developed for convex bodies. If a
given mesh is not convex the additivity property allows us to
compute the quantities anyway by writing the mesh as a fi-
nite union and intersection of convex bodies and then track-
ing the corresponding sums and differences of measures. For
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example, V (Kε) is well defined for an individual triangle K
and we know how to identify the coefficients involving intrin-
sic volumes with the integrals of elementary polynomials in
the principal curvatures. Gluing two triangles together we can
perform a similar identification carefully teasing apart the in-
trinsic volumes of the union of the two triangles. In this way
the convexity requirement is relaxed so long as the shape of
interest can be decomposed into a finite union of convex bod-
ies.

This machinery was used by Cohen-Steiner and Morvan to
give formulæfor integrals of a discrete curvature tensor. We
give these here together with some fairly straightforward intu-
ition regarding the underlying geometry.

Let P be a polyhedron with vertex set V and edge set E
and B a small region (e.g., a ball) in R3 then we can define
integrated Gaussian and mean curvature measures as

φK
P (B) =

∑
v∈V ∩B

Kv and φH
P (B) =

∑
e∈E

l(e ∩B)θe,

where Kv = 2π −
∑

j αj is the excess angle sum at vertex
v defined through all the incident triangle angles at v, while
l(·) denotes the length and θe is the signed dihedral angle at e
made between the incident triangle normals. Its sign is positive
for convex edges and negative for concave edges (note that
this requires an orientation on the polyhedron). In essence this
is simply a restatement of the Steiner polynomial coefficients
restricted to the intersection of the ball B and the polyhedron
P . To talk about the second fundamental form IIp at some
point p in the surface, it is convenient to first extend it to all of
R3. This is done by setting it to zero if one of its arguments is
parallel to the normal p. With this one may define

IIP (B) =
∑
e∈E

l(e ∩B)θeen ⊗ en, en = e/‖e‖.

The dyad (en ⊗ en)(u, v) := 〈u, en〉〈v, en〉 projects given
vectors u and v along the normalized edge.

What is the geometric interpretation of the summands?
Consider a single edge and the associated dyad. The curvature
along this edge is zero while it is θ orthogonal to the edge.
A vector aligned with the edge is mapped to θe while one or-
thogonal to the edge is mapped to zero. These are the prin-
cipal curvatures except they are reversed. Hence IIP (B) is
an integral measure of the curvature tensor with the principal
curvature values exchanged. For example we can assign each
vertex a three-by-three matrix by summing the edge terms for
each incident edge. As a tangent plane at the vertex, which
we need to project the three-by-three matrix to the expected
two-by-two matrix in the tangent plane, we may take a vec-
tor parallel to the area gradient at the vertex. Alternatively we
could defined IIP (B) for balls containing a single triangle
and its three edges each. In that case the natural choice for the
tangent plane is the support plane of the triangle.

Cohen-Steiner and Morvan show that this definition can
be rigorously derived from considering the coefficients of
the Steiner polynomial in particular in the presence of non-
convexities (which requires some fancy footwork...). They
also show that if the polyhedron is a sufficiently fine sample
of a smooth surface the discrete curvature tensor integrals have
linear precision with regards to continuous curvature tensor in-
tegrals. They also provide a formula for a discrete curvature
tensor which does not have the principal curvatures swapped.

In practice one often finds that noise in the mesh vertex
positions makes these discrete computations numerically deli-

cate. One potential fix is to enlarge B to stabilize the computa-
tions. More in depth analyses of numerically reliable methods
to estimate the curvature tensor have been undertaken by Yang
et al. [Yang et al. 2006] and Grinspun et al. [Grinspun et al.
2006].

7 Further Reading

The material in this chapter only gives the rough outlines of
what is a very fundamental theory in probability and geomet-
ric measure theory. In particular there are many other con-
sequences which follow from relationships between intrinsic
volumes which we have not touched upon. A rigorous deriva-
tion of the results of Hadwiger [Hadwiger 1957], but much
shorter than the original can be found in [Klain 1995]. A
complete and rigorous account of the derivation of intrinsic
volumes from first principles in geometric probability can be
found in the short book by Klain and Rota [Klain and Rota
1997], while the details of the discrete curvature tensor in-
tegrals can be found in [Cohen-Steiner and Morvan 2003].
Approximation results which discuss the accuracy of these
measure vis-a-vis an underlying smooth surface are treated by
Cohen-Steiner and Morvan in a series of tech reports available
at http://www-sop.inria.fr/geometrica/publications/.
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The curvatures of a smooth curve or surface are local mea-
sures of its shape. Here we consider analogous measures
for discrete curves and surfaces, meaning polygonal curves
and triangulated polyhedral surfaces. We find that the most
useful analogs are those which preserve integral relations for
curvature, like the Gauß–Bonnet theorem. For simplicity,
we usually restrict our attention to curves and surfaces in
euclidean space R3, although many of the results would eas-
ily generalize to other ambient manifolds of arbitrary dimen-
sion.

These notes are based on work by many people, but un-
fortunately do not include proper citations to the literature.

1 Smooth Curves and Surfaces

Before discussing discrete analogs, we briefly review the
usual theory of curvatures for smooth curves and surfaces
in space.

1.1 Smooth curves

The curvatures of a smooth curve γ are the local proper-
ties of its shape invariant under Euclidean motions. The
only first-order information is the tangent line; since all lines
in space are equivalent, there are no first-order invariants.
Second-order information is given by the osculating circle,
and the invariant is its curvature κ = 1/r.

For a plane curve given as a graph y = f(x) let us con-
trast the notions of curvature and second derivative. At a
point p on the curve, we can find either one by translating p
to the origin, transforming so the curve is horizontal there,
and then comparing to a standard set of reference curves.
The difference is that for curvature, the transformation is a
Euclidean rotation, while for second derivative, it is a shear
(x, y) !→ (x, y − ax). A parabola has constant second deriv-
ative f ′′ because it looks the same at any two points after a
shear. A circle, on the other hand, has constant curvature
because it looks the same at any two points after a rotation.

A plane curve is completely determined (up to rigid mo-
tion) by its (signed) curvature κ(s) as a function of arclength
s. For a space curve, however, we need to look at the third-
order invariants, which are the torsion τ and the deriva-
tive κ′ (which of course gives no new information). These
are now a complete set of invariants: a space curve is deter-
mined by κ(s) and τ(s). (Generally, for higher codimension,
higher-order invariants are needed. For curves in Rn, we
need n− 1 curvatures, of order up to n, to characterize the
shape.)

A smooth space curve γ is often described by its orthonor-
mal Frenet frame (T, N, B). With respect to an arclength

parameter s, the defining equations are T := γ′ and

T
N
B

′

=
0 κ 0
−κ 0 τ
0 −τ 0

T
N
B

.

For a curve γ lying on a surface M , it is often more use-
ful to consider the Darboux frame (T, η, ν), adapted to this
situation. This orthonormal frame includes the tangent vec-
tor T to γ and the normal vector ν to M . Its third element
is thus η := ν×T , called the cornormal. The curvature vec-
tor of γ decomposes into parts tangent and normal to M as
T ′ = κN = κgη+κnν. Here in fact, κn measures the normal
curvature of M in the direction T , and is independent of γ.

1.2 Smooth surfaces

Given a (two-dimensional, oriented) surface M (immersed)
in R3, we understand its local shape by looking at the Gauß
map ν : M → S2 given by the unit normal vector ν = νp at
each point p ∈M . We can view its derivative at p as a linear
endomorphism −Sp : TpM → TpM , since TpM and TνpS2

are naturally identified, being parallel planes in R3. The
map Sp is called the shape operator (or Weingarten map).

The shape operator is the second-order invariant (or cur-
vature) which completely determines the original surface M .
However, it is usually more convenient to work with scalar
quantities. The eigenvalues κ1 and κ2 of Sp are called prin-
cipal curvatures, and (since they cannot be globally distin-
guished) it is their symmetric functions which have geomet-
ric meaning.

We define the Gauß curvature K := κ1κ2 as the deter-
minant of Sp and the mean curvature H := κ1 + κ2 as its
trace. Note that the sign of H depends on the choice of unit
normal ν, and so often it is more natural to work with the
vector mean curvature (or mean curvature vector) H := Hν.
Note furthermore that some authors use the opposite sign
on Sp and thus H, and many use H = (κ1+κ2)/2, justifying
the name mean curvature. Our conventions mean that the
mean curvature vector for a convex surface points inwards
(like the curvature vector for a circle). For a unit sphere ori-
ented with inward normal, the Gauß map ν is the antipodal
map, Sp = I, and H = 2.

The Gauß curvature is an intrinsic notion, depending only
on the pullback metric on the surface M , and not on the im-
mersion into space. That is, K is unchanged by bending the
surface without stretching it. For instance, a developable
surface like a cylinder or cone has K = 0 because it is ob-
tained by bending a flat plane. One intrinsic definition of
K(p) is obtained by considering the circumferences Cε of
(intrinsic) ε-balls around p. We get

Cε

2πε
= 1− ε2

6
K +O(ε3).
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Mean curvature is certainly not intrinsic, but it has a nice
variational interpretation. Consider a variation vectorfield V
on M , compactly supported away from any boundary. Then
H = −δ Area /δ Vol in the sense that

δV Vol = V · ν dA, δV Area = − V · Hν dA.

With respect to the L2 inner product 〈U, V 〉 := Up · Vp dA
on vectorfields, the vector mean curvature is the negative
gradient of the area functional, often called the first variation
of area: H = −∇Area. (Similarly, the negative gradient of
length for a curve is κN .)

Just as κ is the geometric version of second derivative
for curves, mean curvature is the geometric version of the
Laplacian ∆. Indeed, if a surface M is written locally as the
graph of a height function f over its tangent plane TpM then
H(p) = ∆f . Alternatively, we can write H = ∇M ·ν = ∆Mx,
where x is the position vector in R3 and ∆M is Beltrami’s
surface Laplacian.

If we flow a curve or surface to reduce its length or area,
by following these gradients κN and Hν, the resulting par-
abolic heat flow is slightly nonlinear in a natural geometric
way. This so-called mean-curvature flow has been exten-
sively studied as a geometric smoothing flow.

1.3 Integral curvature relations for curves

The total curvature of a curve is κ ds. For closed curves,
the total curvature is at least 2π (Fenchel) and for knotted
space curves the total curvature is at least 4π (Fáry/Milnor).
For plane curves, we can consider instead the signed curva-
ture, and find that κ ds is always an integral multiple of 2π.

Suppose we define (following Milnor) the total curvature
of a polygonal curve simply to be the sum of the turning
angles at the vertices. Then all the theorems for smooth
curves mentioned in the previous paragraph remain true for
polygonal curves. Our goal, when defining curvatures for
polyhedral surfaces, will be to again ensure that integral
relations for these curvatures remain exactly true.

1.4 Integral curvature relations for surfaces

For surfaces, the integral curvature relations we want to con-
sider relate area integrals over a region D ⊂ M to arclength
integrals over the boundary γ = ∂D. The Gauß–Bonnet
theorem says, when D is a disk,

2π −
D

K dA =
γ

κg ds =
γ

T ′ · η ds = − η′ · dx,

where dx = T ds is the vector line element along γ. This
implies that the total Gauß curvature of D depends only
on a collar neighborhood of γ: if we make any modification
to D supported away from the boundary, the total curvature
is unchanged (as long as D remains topologically a disk).
We will extend the notion of Gauß curvature from smooth
surfaces to more general surfaces (in particular polyhedral
surfaces) by requiring this property to remain true.

The other relations are all proved by Stokes’ Theorem,
and thus only depend on γ being the boundary of D in a
homological sense; for these D is not required to be a disk.
First consider the vector area

Aγ := 1
2

γ

x× dx =
D

ν dA.

The right-hand side represents the total vector area of any
surface spanning γ, and the relation shows this to depend
only on γ (and this time not even on a collar neighborhood).
The integrand on the left-hand side depends on a choice of
origin for the coordinates, but because we integrate over a
closed loop, the integral is independent of this choice. Both
sides of this vector area formula can be interpreted directly
for a polyhedral surface, and the equation remains true in
that case.

A simple integral for curve γ from p to q says that

T (q)− T (p) =
q

p

T ′(s) ds = κN ds.

This can be viewed as a balance between tension forces try-
ing to shrink the curve, and sideways forces holding it in
place. It is the relation used in proving that κ is the first
variation of length.

The analog for a surface patch D is the mean curvature
force balance equation

γ

η ds = −
γ

ν × dx =
D

Hν dA =
D

H dA.

Again this represents a balance between surface tension
forces acting in the conormal direction along the boundary
of D and what can be considered as pressure forces (espcially
in the case of constant H) acting normally across D. We will
use this equation to develop the analog of mean curvature
for discrete surfaces.

Two other similar relations that we will not need later are
the torque balance

γ

x× η ds =
γ

x× (ν × dx) =
D

H(x× ν) dA

and the area relation

γ

x · η ds =
γ

x · (ν × dx) =
D

(H · x− 2) dA.

2 Discrete Surfaces

For us, a discrete or polyhedral surface M ⊂ R3 will mean a
triangulated surface with a PL map into space. In more de-
tail, we start with an abstract combinatorial triangulation—
a simplicial complex—representing a 2-manifold with bound-
ary. We then pick positions p ∈ R3 for every vertex, which
uniquely determine a linear map on each triangle; these fit
together to form the PL map.

2.1 Gauß curvature

It is well known how the notion of Gauß curvature extends
to such discrete surfaces M . Any two adjacent triangles
(or, more generally, any simply connected region in M not
including any vertices) can be flattened—developed isomet-
rically into the plane. Thus the Gauß curvature is supported
on the vertices p ∈ M . In fact, to keep the Gauß–Bonnet
theorem true, we must take

D

K dA :=
p∈D

Kp; Kp := 2π −
i

θi.

Here, the angles θi are the interior angles at p of the triangles
meeting there, and Kp is often known as the angle defect
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at p. If D is any neighborhood of p contained in Star(p),
then

∂D
η ds = θi; when the triangles are acute, this is

most easily seen by letting ∂D be the path connecting their
circumcenters and crossing each edge perpendicularly.

(Similar arguments lead to a notion of Gauß curvature—
defined as a measure—for any rectifiable surface. For our
polyhedral surface, this measure consists of point masses at
vertices. Surfaces can also be built from intrinsically flat
pieces joined along curved edges. Their Gauß curvature is
spread out with a linear density along these edges. This
technique is often used in designing clothes, where corners
would be undesirable.)

Note that Kp is clearly an intrinsic notion, as it should
be, depending only on the angles of each triangle and not
on the precise embedding into R3. Sometimes it is useful
to have a notion of combinatorial curvature, independent of
all geometric information. Given just a combinatorial tri-
angulation, we can pretend that each triangle is equilateral
with angles θ = 60◦, whether or not that geometry could
be embedded in space. The resulting combinatorial curva-
ture is Kp = π

3 (6 − deg p). In this context, the global form
Kp = 2πχ(M) of Gauß–Bonnet amounts to nothing more

than the definition of the Euler characteristic χ.

2.2 Vector area

The vector area formula

Aγ := 1
2

γ

x× dx =
D

ν dA

needs no special interpretation for discrete surfaces: both
sides of the equation make sense directly, since the surface
normal ν is well-defined almost everywhere. However, it is
worth interpreting this formula for the case when D is the
star of a vertex p. More generally, suppose γ is any closed
curve (smooth or polygonal), and D is the cone from p to
γ (the union of all line segments pq for q ∈ γ). Fixing γ
and letting p vary, we find that the volume enclosed by this
cone is a linear function of p, and Ap := ∇p Vol D = A/3 =
1
6 γ

x×dx. We also note that any such cone D is intrinsically
flat except at the cone point p, and that 2π−Kp is the cone
angle at p.

2.3 Mean curvature

The mean curvature of a discrete surface M is supported
along the edges. If e is an edge, and e ⊂ D ⊂ Star(e) =
T1 ∪ T2, then

He :=
D

H dA =
∂D

η ds = e× ν1 − e× ν2 = J1e− J2e.

Here νi is the normal vector to the triangle Ti, and Ji is
rotation by 90◦ in the plane of that triangle. Note that
|He| = 2|e| sin θe

2 where θe is the exterior dihedral angle
along the edge, defined by cos θe = ν1 · ν2.

No nonplanar discrete surface has He = 0 along every
edge. But this discrete mean curvature can cancel out
around the vertices. We set

2Hp :=
e$p

He =
Star(p)

H dA =
Link(p)

η ds.

The area of the discrete surface is a function of the ver-
tex positions; if we vary only one vertex p, we find that
∇p Area(M) = −Hp.

Suppose that vertices adjacent to p are p1, . . . , pn. Then
we have

3Ap = 3∇p Vol =
Star p

ν dA

= 1
2

Link p

x× dx = 1
2

i

pi × pi+1

and similarly

2Hp = Hppi = −2∇p Area = Ji(pi+1 − pi)

=
i

(cot αi + cot βi)(p− pi),

where αi and βi are the angles opposite edge ppi in the two
incident triangles.

Note that if we change the combinatorics of a discrete
surface M by introducing a new vertex p along an existing
edge e, and subdividing the two incident triangles, then Hp

in the new surface equals the original He, independent of
where along e we place p. This allows a variational interpre-
tation of He.

2.4 Minkowski mixed volumes

A somewhat different interpretation of mean curvature for
convex polyhedra is suggested by Minkowski’s theory of
mixed volumes (which actually dates in this form well ear-
lier). If X is a smooth convex body in R3 and Bt(X) denotes
its t-neighborhood, then

Vol(Bt(X)) = Vol X + t Area X +
t2

2 X

H dA +
t3

3 X

K dA.

Here, the last integral is always 4π.

When X is instead a convex polyhedron, the only term
that needs a new interpretation is

X
H dA. The correct

replacement for this term is then e |e| θe. This suggests
He := |e| θe as a notion of total mean curvature for the
edge e.

We note the difference between this formula and our ear-
lier |He| = 2|e| sin θe/2. Either one can be derived by re-
placing the edge e with a sector of a cylinder of length |e|
and arbitrary (small) radius r. We find then

H dA = He, H dA = He.

The difference is explained by the fact that one formula inte-
grates the scalar mean curvature while the other integrates
the vector mean curvature.

2.5 CMC surfaces and Willmore surfaces

A smooth surface which minimizes area under a volume con-
straint has constant mean curvature; the constant H can be
understood as the Lagrange multiplier for the constrained
minimization problem. A discrete surface which minimizes
area among surfaces of fixed combinatorial type and fixed
volume will have constant discrete mean curvature H in
the sense that at every vertex, Hp = HAp, or equivalently
∇p Area = −H∇p Vol. In general, of course, the vectors
Hp and Ap are not even parallel: they give two competing
notions of a normal vector at p.
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Still,

hp :=
|∇p Area |
|∇p Vol | =

|Hp|
|Ap| =

|
Star p

H dA|
|

Star p
ν dA|

gives a better notion of mean curvature near p
than, say, the smaller quantity 3|Hp|/ Area(Star(p)) =
| H dA|/ 1 dA.

For this reason, a good discretization of the Willmore elas-
tic energy H2 dA is given by p h2

p
1
3 Area(Star(p)).

2.6 Relation to discrete harmonic maps

Discrete minimal surfaces minimize area, but also have other
properties similar to those of smooth minimal surfaces. For
instance, in a conformal parameterization, their coordinate
functions are harmonic. We don’t know when in general a
discrete map should be considered conformal, but the iden-
tity map is certainly conformal. We have that M is dis-
crete minimal if and only if Id : M → R3 is discrete har-
monic. Here a PL map f : M → N is called discrete
harmonic if it is a critical point for the Dirichlet energy
E(f) := T |∇fT |2 AreaM (T ). We find that E(f)−Area N
is a measure of nonconformality. For the identity map,
E(IdM ) = Area(M) and ∇pE(IdM ) = ∇p Area(M) con-
firming that M is minimal if and only if IdM is harmonic.
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A Discrete Model of Thin Shells
Eitan Grinspun

Columbia University

Figure 1: A measure of discrete strain is used to fracture a thin shell in this simulation of a shattering lightbulb.

Abstract

We describe a discrete model for the dynamics of thin flexible struc-
tures, such as hats, leaves, and aluminum cans, which are charac-
terized by a curved undeformed configuration. Previously such thin
shell models required complex continuum mechanics formulations
and correspondingly complex algorithms. We show that a simple
shell model can be derived geometrically for triangle meshes and
implemented quickly by modifying a standard cloth simulator. Our
technique convincingly simulates a variety of curved objects with
materials ranging from paper to metal, as we demonstrate with sev-
eral examples including a comparison of a real and simulated falling
hat.

This chapter is based on the publication by Eitan Grinspun, Anil
Hirani, Mathieu Desbrun, and Peter Schröder which appeared in
the Proceedings of the Symposium for Computer Animation 2003,
and on subsequent collaborations with the group of Denis Zorin at
New York University and Zoë Wood at Cal Poly San Luis Obispo.

1 Introduction

Thin shells are thin flexible structures with a high ratio of width to
thickness (> 100) [Ciarlet 2000]. While their well-known counter-
parts, thin plates, relax to a flat shape when unstressed, thin shells
are characterized by a curved undeformed configuration. Cloth, re-
cently studied in the computer animation literature, may be mod-
eled as a thin plate, since garments are typically constructed from
flat textiles. In stark contrast, thin-walled objects which are natu-
rally curved (e.g., leaves, fingernails), or put into that shape through
plastic deformation (e.g., hats, cans, carton boxes, pans, car bodies,
detergent bottles) are thin shells and cannot be modeled using plate
formulations.

Thin shells are remarkably difficult to simulate. Because of
their degeneracy in one dimension, shells do not admit to straight-
forward tessellation and treatment as three-dimensional solids; in-
deed, the numerics of such approaches become catastrophically ill-
conditioned, foiling numerical convergence and/or accuracy. Ro-
bust finite element methods for thin shell equations continue to be
an active and challenging research area.

In this chapter we develop a simple model for thin shells with
applications to computer animation. Our discrete model of shells

Figure 2: The local coordinate frame in a small neighborhood of a
thin shell: two axes span the middle surface, and the normal shell
director spans the thickness.

captures the same characteristic behaviors as more complex mod-
els, with a surprisingly simple implementation. We demonstrate the
realism of our approach through various examples including com-
parisons with real world footage (see Figure 4).

2 Kinematics
Since it is thin, the geometry of the shell is well described by its
middle-surface (see Figure 2). At any point on the middle sur-
face the local tangent plane and surface normal induce a coordinate
frame in which to describe “motion along the surface” and “motion
along thickness.”

In the discrete setting, the topology of the middle surface is
represented by the combinatorics of an oriented 2-manifold sim-
plicial complex, M = {v, e, f}, where v = {v1, v2, . . .}, e =
{e1, e2, . . .}, f = {f1, f2, . . .} are sets of vertices, edges and faces
respectively. The geometry of the middle surface is given by the
discrete configuration map, C : v 7→ R3, which assigns to every
vertex, vi, a position, C(vi), in the ambient space. Together M and
C correspond to the usual notion of a triangle mesh in R3; in our
exposition we assume fixed combinatorics M , and discuss a tem-
porally evolving configuration, Ct where the subscript refers to a
specific instant in time.

Restricting our attention to elastic (“memory-less”) materials,
the physics can be understood in terms of the undeformed config-
uration (the stress-free shape) and the deformed configuration (the
stressed shape at the current instant in time), C0 and C1, respec-
tively. The elastic response of a material depends on the change in
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Figure 3: Frames from the simulation of tumbling thin shell.

shape of the elastic body, and on the constitutive laws that describe
the restoring forces associated to this change in shape. The former
is a purely geometric quantity.

What is the change in shape between C0 and C1? Since rigid
motions (translations and rotations) do not affect shape, the answer
must be invariant under composition of C0 (likewise C1) with any
rigid body transformation. A simple theorem is that any reasonable
measure of change in shape, or generalized strain, may be written
as a function of only the edge lengths and dihedral angles of C0 and
C1. The proof lies in showing that the configuration can be com-
pletely recovered from the edge lengths and dihedral angles, up to
an unknown (but here inconsequential) rigid body transformation.
We will also expect our measure of strain to be zero when shape
has not changed, and non-zero whenever shape has changed. In
particular, strain should “see” any local change in shape.

Perhaps the simplest forms of generalized strain which satisfy
these desiderata are two expressions that are evaluated at a specific
edge ei. Comparing C0 to C1, let se(ei) be the difference in length
of edge ei, and let sθ(ei) be the difference in dihedral angle at ei.

While these are perhaps the simplest possible measures of gener-
alized strain, other more complex formulas can offer attendant ad-
vantages. Recent research in discrete shell models has focused on
functions evaluated over mesh faces which aggregate in one term
the configuration of all the incident edge lengths and dihedral an-
gles [Gingold et al. 2004]. Nevertheless, our goal here is to develop
the simplest discrete model of thin shells capturing their qualitative
elastic behavior.

3 Constitutive Model

Having defined the geometry of thin shells, we turn our attention
to the governing physical equations. The stored elastic energy of a
thin shell is at the heart of the equations which govern its response
to elastic deformations. The stored energy, W [C0, C1], should be a
function of the local strain, integrated over the middle surface.

We choose the simplest expression for energy that is consistent
with Hookean mechanics. In 1676 Robert Hooke stated

The power [sic.] of any springy body is in the same
proportion with the extension.

This statement was the birth of modern elasticity, which states that
a first order approximation for the response of a material is a force
proportional to strain, and consequently (by the definition of work
as force over distance) that the first approximation of stored energy
is quadratic in strain. We propose an energy with two kinds of
terms, measuring stretching and bending modes respectively:

WM [C0, C1] =
X

ei∈M

ke
i ·

`
se(ei)

´2
+

X
ek∈M

kθ
k ·

`
sθ(ek)

´2
,

This expression has several desirable properties. First, it is pos-
itive whenever the shapes of C0 and C1 differ, and zero other-
wise. Second, evaluations over subsets of M satisfy the usual in-
clusion/exclusion principle: for A, B ⊂ M , WM = WA + WB −
WA∩B , which is consistent with continuum formulations in which
energy is defined as an integral of energy density over the middle

surface. Third, because strain is invariant under rigid body transfor-
mations of the undeformed and deformed configurations, Nöther’s
theorem guarantees that the resulting dynamics will conserve linear
and angular momentum. Consider the following interpretations of
the membrane and bending terms:

Membrane Elastic surfaces resist stretching (local change in
length). While some materials such as rubber sheets may undergo
significant deformations in the stretching or shearing (membrane)
modes, we focus on inextensible shells which are characterized by
nearly isometric deformations, i.e., possibly significant deforma-
tions in bending but unnoticeable deformation in the membrane
modes. Most membrane models for triangle meshes satisfy this
small-membrane-strain assumption with choice of suitably large
membrane stiffness coefficient, ke

i .
Rewriting the membrane term in the following form permits an

alternative interpretation:

W e(ei) = ke (|ei| − |ēi|)2 = ke|ēi|2
„
|ei|
|ēi|

− 1

«2

where |ei| is the length of edge i, quantities with a bar (such as
ēi) refer to the undeformed configuration C0 and remaining quanti-
ties are with respect to C1; note that we have dropped the subscript
on ke

i indicating a uniform material stiffness over the domain of
interest. This is a unitless strain measurement, squared, and then
integrated over the area of the local neighborhood, and multiplied
by the material-dependent parameters. Observe that under regu-
lar refinement of a triangle mesh, the local area indeed scales as
|ēj |2, which has units of area. The units of the material parameters
are energy per unit area, i.e., surface energy density. In engineering
models of shells, the material parameter is given as a volume energy
density, and the energy is integrated over shell thickness yielding a
surface energy density. Efficient implementations of this formula
precompute the quantities ke|ēi|2, which depend only on the unde-
formed configuration.

Bending Consider the proposed discrete bending energy in rela-
tion to its continuous analogues. Models in mechanics are typically
based on tensors, and in particular shell models use the difference
of the second fundamental forms [Gray 1998] in the deformed and
undeformed configurations (pulling back the deformed tensor onto
the undeformed configuration). These treatments derive tensorial
expressions over smooth manifolds, and as a final step discretize to
carry out the numerics.

The shape operator [Gray 1998] is the derivative of the Gauss
map1: geometrically, it measures the local curvature at a point on a
smooth surface. Our bending energy is an extrinsic measure of the
difference between the shape operator evaluated on the deformed
and undeformed surfaces. We express this difference as the squared
difference of mean curvature:

[Tr(ϕ∗S)− Tr(S̄)]2 = 4(H ◦ ϕ− H̄)2 , (1)

where S̄ and S are the shape operators evaluated over the unde-
formed and deformed configurations respectively; likewise H̄ and
H are the mean curvatures; ϕ∗S is the pull-back of S onto Ω̄,
and we use Tr(ϕ∗S) = ϕ∗ Tr(S) = Tr(S) ◦ ϕ = H ◦ ϕ
for a diffeomorphism ϕ. This measure is extrinsic: it sees only
changes in the embedding of the surface in R3. Integrating (1)
over the reference domain we find the continuous flexural energyR
Ω̄

4(H ◦ ϕ − H̄)2dĀ. Next, we discretize this integral over the
piecewise linear mesh that represents the shell.

We derive the discrete, integral mean-curvature squared op-
erator as follows. We first partition the undeformed surface

1This is the map from the surface to the unit sphere, mapping each sur-
face point to its unit surface normal.
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Figure 4: Real footage vs. Simulation: left, a real hat is dropped on
a table; right, our shell simulation captures the bending of the brim.
Notice that volumetric-elasticity, plate, or cloth simulations could
not capture this behavior, while earlier work on shell simulation
required significant implementation and expertise.

into a disjoint union of diamond-shaped tiles, T̄ , associated to
each mesh edge, e, as indicated on the side figure. Following
[Meyer et al. 2003], one can use the barycenter of each trian-
gle to define these regions—or alternatively, the circumcenters.

h
e

T
e

Over such a diamond, the mean cur-
vature integral is

R
T̄

H̄dĀ = θ̄|ē| (for
a proof see [Cohen-Steiner and Mor-
van 2003]). A similar argument leads
to:

R
T̄
(H ◦ϕ− H̄)dĀ = (θ− θ̄)|ē|.

Using the notion of area-averaged
value from [Meyer et al. 2003], we
deduce that (H ◦ ϕ − H̄)|T̄ = (θ −
θ̄)/h̄e, where h̄e is the span of the un-
deformed tile, which is one sixth of
the sum of the heights of the two tri-
angles sharing ē. For a sufficiently
fine, non-degenerate tessellation approximating a smooth surface,
the average over a tile (converging pointwise to its continuous
counterpart) squared is equal to the squared average, leading to:R

T̄
(H ◦ ϕ− H̄)2dĀ = (θ − θ̄)2|ē|/h̄e.

We might instead consider a formula of the form (θ − θ̄)2|ē|.
Here the energy functional becomes dependent only on its piece-
wise planar geometry not on the underlying triangulation. An at-
tractive claim, this is appealing in that a material’s physical energy
should depend on its shape, not on the discretization of the shape.
Unfortunately, there is no discretization of (1) that simultaneously
is (a) dependent only on the geometry not its triangulation, and (b)
converges to its continuous equivalent under refinement. Indeed,
the area integral of (1) is in general unbounded for a piecewise pla-
nar geometry! A discrete energy satisfying both (a) and (b) may
exist for smoother surfaces, but our focus is piecewise planar (tri-
angle mesh) geometry.

Following the argument found in [Meyer et al. 2003], there may

be numerical advantages in using circumcenters instead of barycen-
ters for the definition of the diamond tiles (except in triangles with
obtuse angles). This affects the definition of h̄e and of the lumped
mass. Since we only need to compute these values for the unde-
formed shape, the implementation and performance only of initial-
ization code would be affected. Bobenko notes that when circum-
centers are used, this formulation of discrete shells coincides (for
flat undeformed configurations) with the derivation of the discrete
Willmore energy based on circle packing [Bobenko 2004],.

As we have just seen, we can express our discrete flexural energy
as a summation over mesh edges,

W θ(ek) = Kθ `
θk − θ̄k

´2 |ēk|
h̄k

, (2)

e
θewhere the term for edge ek is where

θk and θ̄k are corresponding comple-
ments of the dihedral angle of edge
ek measured in the deformed and un-
deformed configuration respectively,
Kθ is the material bending stiffness,
and h̄k is a third of the average of the
heights of the two triangles incident to the edge ek (see the appendix
for another possible definition of h̄k). Note that the unit of Kθ is
energy (not surface energy density). This formulation is consis-
tent with the physical scaling laws of thin shells: if the (deformed
and undeformed) geometry of a thin shell is uniformly scaled by
λ along each axis, then surface area scales as λ2 as does the total
membrane energy, however the total bending (curvature squared)
energy is invariant under uniform scaling.

Following the reasoning for (1), we could have formed a second
energy term taking the determinant instead of the trace of S. This
would lead to a difference of Gaussian curvatures, but this is al-
ways zero under isometric deformations (pure bending). This is not
surprising, as Gaussian curvature is an intrinsic quantity, i.e., it is
independent of the embedding of the two-dimensional surface into
its ambient three-dimensional space. In contrast, flexural energy
measures extrinsic deformations.

4 Dynamics

The treatment of the temporal evolution of a thin shell is beyond the
scope of this chapter; we briefly summarize the basic components
required to simulate the motion of thin shells.

Our dynamic system is governed by the ordinary differential
equation of motion ẍ = −M−1 ∇W (x) where x is the vector
of unknown DOFs (i.e., the vertices of the deformed geometry) and
M is the mass matrix. We use the conventional simplifying hypoth-
esis that the mass distribution is lumped at vertices: the matrix M
is then diagonal, and the mass assigned to a vertex is a third of the
total area of the incident triangles, scaled by the area mass density.

Newmark Time Stepping We adopt the Newmark
scheme [Newmark 1959] for ODE integration,

xi+1 = xi + ∆tiẋi + ∆t2i
`
(1/2− β)ẍi + βẍi+1

´
,

ẋi+1 = ẋi + ∆ti

`
(1− γ)ẍi + γẍi+1

´
,

where ∆ti is the duration of the ith timestep, ẋi and ẍi are configu-
ration velocity and acceleration at the beginning of the ith timestep,
respectively, and β and γ are adjustable parameters linked to the
accuracy and stability of the time scheme. Newmark is either an
explicit (β = 0) or implicit (β > 0) integrator: we used β = 1/4
for final production, and β = 0 to aid in debugging. Newmark
gives control over numerical damping via its second parameter γ.
We obtained the best results by minimizing numerical damping
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(γ = 1/2); this matches Baraff and Witkin’s observation that nu-
merical damping causes undesirable effects to rigid body motions.
See also [West et al. 2000] for a discussion of the numerical advan-
tages of the Newmark scheme.

Dissipation Shells dissipate energy via flexural oscillations. To
that end we complete our model with an optional damping force
proportional to (θ̇− ˙̄θ)∇θ where ˙̄θ = 0 for elastic deformations but
is in general non-zero for plastoelastic deformations. This is con-
sistent with standard derivations of Rayleigh-type damping forces
using the strain rate tensor [Baraff and Witkin 1998].

Discussion This discrete flexural energy (2) generalizes es-
tablished formulations for (flat) plates both continuous and dis-
crete: (a) Ge and coworkers presented a geometric argument
that the stored energy of a continuous inextensible plate has the
form

R
Ω̄

cHH2 + cKKdA for material-specific coefficients cH

and cK [Ge et al. 1996]; (b) Haumann used a discrete hinge en-
ergy [Haumann 1987], similarly Baraff and Witkin used a dis-
crete constraint-based energy [Baraff and Witkin 1998], of the form
WB(x) =

P
ē θ2

e . Our approach generalizes both (a) and (b), and
produces convincing simulations beyond the regime of thin plate
and cloth models (see Section 5).

The proposed discrete model has three salient features: (a) the
energy is invariant under rigid body transformation of both the un-
deformed and the deformed shape: our system conserves linear and
angular momenta; (b) the piecewise nature of our geometry descrip-
tion is fully captured by the purely intrinsic membrane terms, and
the purely extrinsic bending term; most importantly, (c) it is simple
to implement.

5 Results

We exercised our implementation on various problems, including
fixed beams, falling hats, and pinned paper. Computation time, on
a 2GHz Pentium 4 CPU, ranged from 0.25s–3.0s per frame; timings
are based on a research implementation that relies on automatic dif-
ferentiation techniques.

flat beam v beam

Figure 5: Three pairs of flat and v-beams with increasing flexural
stiffness Kθ (left to right) of 100, 1000, and 10000; the non-flat
cross section of the v-beam contributes to structural rigidity.

Beams We pinned to a wall one end of a v-beam, and released
it under gravity. Figure 5 demonstrates the effect of varying flex-
ural stiffness on oscillation amplitude and frequency. The flexural
energy coefficient has a high dynamic range; extreme values (from
pure-membrane to near-rigid) remain numerically and physically
well-behaved. Observe that increasing flexural stiffness augments
structural rigidity. Compare the behavior of beams: the non-flat
cross section of the v-beam contributes to structural rigidity. This
difference is most pronounced in the operating regime of low flex-
ural stiffness (but high membrane stiffness). Here the material does
not inherently resist bending, but a V-shaped cross-section effec-
tively converts a bending deformation into a stretching deformation.

Figure 6: Modeling a curled, creased, and pinned sheet of paper:
by altering dihedral angles of the reference configuration, we effect
plastic deformation. While the rendering is texture-mapped we kept
flat-shaded triangles to show the underlying mesh structure.

One can mimic this experiment by holding a simple paper strip by
its end; repeat after folding a v-shaped cross-section.

Elastic hats We dropped both real and virtual hats and com-
pared (see Figure 4): the deformation is qualitatively the same, dur-
ing impact, compression, and rebound. Adjusting the damping pa-
rameter, we capture or damp away the brim’s vibrations. Adjusting
the flexural stiffness, we can make a hat made of hard rubber or
textile of a nearly-rigid hat and a floppy hat).

Plastoelasticity As discussed in the early work of Kergosien
and coworkers, a compelling simulation of paper would require a
mechanical shell model [Kergosien et al. 1994]. Using our simple
shell model, we can easily simulate a sheet of paper that is rolled,
then creased, then pinned (see Figure 6). Here the physics require
plastic as well as elastic deformations. We begin with a flat sur-
face, and gradually increase the undeformed angles, θ̄e. Notice:
modifying the undeformed configuration effects a plastic deforma-
tion. The kinematics of changing θ̄e span only physically-realizable
bending, i.e., inextensible plastic deformations. In contrast, directly
modifying x̄ could introduce plastic deformations with unwanted
membrane modes. We introduced elastic effects by applying three
pin constraints to the deformed configuration. Observe the half-
crease on the left side. The energy of the undeformed state is no
longer zero! The (plastically-deformed) left and (untouched) right
halves have incompatible undeformed shapes, consequently the un-
deformed configuration is not stress-free.

Figure 7: Virtual origami: user-guided simulated folding of a paper
sheet produces a classical origami dog.
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Recent extensions More recently, we demonstrated that sim-
ple, discrete models of thin shells can also produce striking exam-
ples of shattering glass (see Figure 1) [Gingold et al. 2004], and
paper origami (see Figure 7) [Burgoon et al. 2006].

Implementation An attractive practical aspect of the proposed
model is that it may be easily incorporated into working code of a
standard cloth or thin-plate simulator such as those commonly used
by the computer graphics community [Baraff and Witkin 1998].
One must replace the bending energy with (2). From an imple-
mentation point of view, this involves minimal work. For exam-
ple, consider that [Baraff and Witkin 1998] already required all the
computations relating to θe. These and other implementation de-
tails were outlined in [Grinspun et al. 2003].

6 Further Reading

A comprehensive survey of this expansive body of literature is far
beyond the scope of this chapter; as a starting point see [Arnold
2000; Cirak et al. 2002] and references therein. Here we highlight
only a few results from the graphics and engineering literature.

Recently, novel numerical treatments of shells, significantly
more robust than earlier approaches, have been introduced in me-
chanics by Cirak et al. [Cirak et al. 2000] and in graphics by
Green et al.and Grinspun et al. [Green et al. 2002; Grinspun et al.
2002] among others. These continuum-based approaches use the
Kirchoff-Love constitutive equations, whose energy captures curva-
ture effects in curved coordinate frames; consequently they model
a rich variety of materials. In contrast, thin plate equations assume
a flat undeformed configuration. Thin plate models are commonly
used for cloth and garment simulations and have seen successful
numerical treatment in the computer graphics literature (see [House
and Breen 2000] and references therein). Thin plates have also been
useful for variational geometric modeling [Celniker and Gossard
1991; Greiner 1994; Welch and Witkin 1992] and intuitive direct
manipulation of surfaces [Qin and Terzopoulos 1996; Terzopou-
los and Qin 1994]. In graphics, researchers have used two kinds
of approaches to modeling plates: finite-elements and mass-spring
networks. In the latter resistance to bending is effected by springs
connected to opposite corners of adjacent mesh faces. Unfortu-
nately, this simple approach does not carry over to curved unde-
formed configurations: the diagonal springs are insensitive to the
sign of the dihedral angles between faces.

In this chapter we have developed a very simple discrete model
of thin shells. One price that must be paid for this simplicity is that,
while we have taken care to ensure the correct scaling factors for
each energy term, for an arbitrary triangle mesh we cannot guar-
antee the convergence of this model to its continuum equivalent.
In [Grinspun et al. ] we present experimental results comparing the
convergence of the discrete shell and other discrete curvature oper-
ators.
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Abstract

Efficient computation of curvature-based energies is important for
practical implementations of geometric modeling and physical sim-
ulation applications. Building on a simple geometric observation,
we provide a version of a curvature-based energy expressed in terms
of the Laplace operator acting on the embedding of the surface. The
corresponding energy—being quadratic in positions—gives rise to
a constant Hessian in the context of isometric deformations. The
resulting isometric bending model is shown to significantly speed
up common cloth solvers and, when applied to geometric modeling
situations built on Willmore flow, to provide runtimes that are close
to interactive rates.

1 Introduction

Efficient computation of curvature-based energies is important for
practical implementations of physical simulation and geometric
modeling applications. Any coordinate-invariant curvature energy
may be expressed in terms of principal curvatures (eigenvalues
of the shape operator), and desired symmetries often lead to ex-
pressions in terms of the elementary symmetric functions: mean
(H = κ1 + κ2), Gaussian (K = κ1κ2), and total (κ2

1 + κ2
2) cur-

vature. Energies assembled from these elementary expressions are
widely used in geometric modeling, e.g. [Schneider and Kobbelt
2001; Clarenz et al. 2004; Hildebrandt and Polthier 2004; Bobenko
et al. 2005; Deckelnick et al. 2005], as well as physical simulation
of 2D deformable objects, such as cloth and thin shells (see the
recent survey of Thomaszewsi and Wacker [2006] and the theory
of Ciarlet [2000]). As a model problem we consider the bending
energy functional

E(S) =

Z
S

H2dvol . (1)

In the continuous case, this energy is invariant under rigid motions
and uniform scaling of the surface S (in fact, it is invariant under
all Möbius transformations of ambient 3-space [White 2000]).

In this chapter we explore the interrelation between isometry,
differential operators, and curvature energy. The importance of
isometry for simplification of energy was previously acknowledged
in the context of surface fairing and modeling, e.g., by Desbrun et
al. [1999b] and later Schneider et al. [2001]. We focus primarily on
the simulation of inextensible plates and shells where physics dic-
tates quasi-isometry: membrane stiffness typically is greater than
bending stiffness by four or more orders of magnitude (cf. Koiter’s
model [Ciarlet 2000]) and the advantages of isometry can be ex-
ploited in full.

Although ultimately we are interested in discretizing the func-
tional (1), we begin with a central observation and guiding princi-
ple in the continuous domain: E(S) is “quadratic in positions” in
the following sense. If I : S → E3 denotes the embedding of the
surface, the mean curvature normal H of S can be written as the
intrinsic Laplacian ∆ (induced by the Riemannian metric of S) ap-
plied to the embedding of the surface, H = ∆I (note that this is
a vector-valued quantity; here and henceforth vector quantities are

typeset in boldface). Then we write our bending model as

E(S) =

Z
S

〈∆I, ∆I〉dvol. (2)

where 〈·, ·〉 denotes the inner product of E3.
We pay special attention to isometric deformations of a surface;

such deformations are a reasonable assumption for various textiles
and, more generally, inextensible thin plates and shells. Since the
intrinsic Laplacian ∆ remains unchanged under isometric defor-
mations of the surface, we infer that E(S) is quadratic in positions
under isometric deformations; therefore, in the discrete case the
corresponding Hessian is constant. We will refer to E(S) written
in the form of (2) as the isometric bending model (IBM).

From a differential geometry point of view, these observations
offer no surprises. However, they have a number of very practical
consequences when carried over to discrete differential geometry
(DDG). In this setting one begins with a discrete mean curvature
or discrete Laplacian if one seeks a discrete version of (1) or (2),
respectively. While DDG operators are extensively studied [Pinkall
and Polthier 1993; Mercat 2001; Meyer et al. 2003; Bobenko 2005],
our aim here is to seek operators that satisfy a discrete IBM: a bend-
ing energy quadratic in positions under the class of discrete isomet-
ric deformations. Therefore we must begin with a reasonable def-
inition of isometry, which in the case of triangulated surfaces we
take to be that (a) bending occurs only along edges, and (b) edges
may not stretch. In reality, the second clause is relaxed, i.e., we
consider discrete quasi-isometry.

In analogy to the smooth case, a discrete IBM will be based on
Laplacians that are—by construction—invariant under discrete iso-
metric deformations. Fortunately, the necessary discrete operators
are readily available, either by building on a mixture of conform-
ing (vertex-based) and nonconforming (edge-based) linear finite el-
ements, or also, as we shall explain, by linearizing well-established
bending models such as [Bridson et al. 2003; Grinspun et al. 2003]
about the planar rest state.

In short, the main purpose of the current chapter is twofold:
showing the transition of the continuous IBM to a discrete one, and
exploiting this discrete model for speeding up computations involv-
ing inextensible thin materials.

Main observations Our central observation is that the isomet-
ric bending energy has a constant Hessian corresponding to ∆2 (or
more generally a squared second-order differential operator). Based
on this observation,

• We describe a family of discretizations of the IBM that are
(i) invariant under rigid transformations and uniform scaling
and (ii) quadratic in mesh positions.

• We show that virtually any cloth or thin plate simulator that
requires the computation of bending forces can easily incor-
porate this discrete IBM, and in doing so, we observed a 2-3×
speedup for representative solvers.

• We remark that using the IBM as a surrogate energy in the
semi-implicit solution of Willmore flow enables hole-filling
and non-shrinking smoothing applications at nearly interac-
tive rates.
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Figure 1: Snapshots from our simulation of a billowing flag. The accompanying movie demonstrates that despite its economy of cost, the
proposed bending model achieves qualitatively the same dynamics as popular nonlinear models.

1.1 Physical models of cloth and thin plates

Efficient simulation of clothing and thin plates is important for fea-
ture film production, fashion design, and manufacturing, among
other applications. The pioneering work of Terzopoulos et
al. [1987], who introduced tensorial treatment of elastica in graph-
ics, and of Baraff and Witkin [1998], who demonstrated the power
of a semi-implicit integration framework for cloth, spurred numer-
ous significant developments in the treatment of numerics [Ascher
and Boxerman 2003; Hauth et al. 2003], contact response [Brid-
son et al. 2002; Baraff et al. 2003], and constitutive models [Choi
and Ko 2002]. The body of literature on simulation of cloth is too
broad to survey here, and we refer the reader to the recent sur-
veys [Choi and Ko 2005; Magnenat-Thalmann and Volino 2005;
Zhu et al. 2004; Ng and Grimsdale 1996] and the text of House and
Breen [2000].

In general, computer graphics methods have formulated and dis-
cretized separately the membrane and bending modes of deforma-
tion (an approach mirrored by treatments of thin plates in the finite
element community [Zienkiewicz and Taylor 2000; Hughes 1987]).

Although bending forces are much weaker than stretching forces,
their interaction with membrane forces determines the shape of
folds and wrinkles that we associate with garments and other thin
flexible bodies [Thomaszewski and Wacker 2006; Ciarlet 2000].

Membrane modes Feynman [Feynman 1986] introduced dis-
cretizations of membrane energy for computer animation, and other
models followed [Terzopoulos et al. 1987; Haumann 1987; Carig-
nan et al. 1992; Baraff and Witkin 1998]. Any good treatment
of membrane response satisfies the assumption of small in-plane
strains. To achieve this, some practicioners use a stiff membrane
response, whereas others prefer a reduced stiffness combined with
a strain limiting procedure [Provot 1995; Bridson et al. 2002; Des-
brun et al. 1999a]. In summary, we may safely view the planar
strain (membrane) forces as a mechanism (in the spirit of Lagrange
multipliers or penalty forces) that enforces an isometry constraint
on the manifold of permissible deformations. In this light, our con-
cern here is impartial to the choice of membrane model.

Bending modes For a thorough overview of bending models
in graphics we refer to [Thomaszewski and Wacker 2006]. Dis-
cretizations of bending may be loosely categorized as involving (a)
particles interconnected by springs and dampers [Breen et al. 1994;
Volino et al. 1995; Choi and Ko 2002], (b) linear or higher-order
finite-elements [Etzmuss et al. 2003; Cirak et al. 2000], or (c) dihe-
dral angles [Baraff and Witkin 1998; Bridson et al. 2003; Grinspun
et al. 2003].

For comparison, we implemented the widely-adopted bending
model described in [Baraff and Witkin 1998], henceforth the “non-
linear hinge.” To our knowledge all the commonly-used models are
either inherently nonlinear in positions—they usually involve ex-
pressions in terms of lengths or angles —or they assume small dis-

placements and factor out a rigid motion each time step. The bulk of
our performance advantage results from the observation that IBM’s
forces are naturally linear in position, without assuming small dis-
placements or disposing of rotational invariance.

Before going into details of these applications, we start by out-
lining our discretization scheme. This scheme will yield an IBM
based on discrete differential operators.

2 Geometric discretization of curvature
energy

Our guiding principles for discretization are: (a) to maintain the ge-
ometric description of the continuous operators defined above, (b)
to maintain the simple quadratic structure of bending energy when
expressed in these terms, and (c) to preserve key symmetries of the
continuous energy, namely, invariance under rigid transformations
and uniform scaling.

2.1 Discrete mean curvature

Several discrete versions of mean curvature have been brought for-
ward recently. We review some of the most important models for
triangulated meshes here. Observe that in all these models discrete
curvature is an integrated quantity. In this setting curvatures do not
correspond to functions (quantities that can be evaluated pointwise).
Instead, they correspond to evaluations of functionals—functions
integrated over some domain Ω. The need for a clear distinction
between functions and functionals becomes immediate when apply-
ing operations, in our case when squaring H: squaring the point-
wise mean curvature and then integrating,

R
Ω

H2, is not the same
as integrating the mean curvature and then squaring,

`R
Ω

H
´2.

In more general terms, we think of a functional F as associat-
ing to a function f its integrated value over some domain Ω. The
opposite direction, going from a functional F to a function f , in-
volves averaging (dividing) by the area of Ω. This underscores
the relevance of Voronoi regions and barycentric area in the geo-
metric modeling literature. Extending this notation, we may evalu-
ate the functional over an array of domains, Ωi. In matrix-vector
form, this reads f = M−1F , where M is a matrix with diag-
onal entries |Ωi| corresponding to areas. The key observation is
that M−1 projects evaluations of a functional to their correspond-
ing (“averaged”) function values. This relation may be derived in a
finite-element framework where M (now not necessarily diagonal)
retains the meaning shown here (cf. Appendix B). In working with
triangle meshes, the domains Ωi are usually associated to neighbor-
hoods of either edges (ei) or vertices (vi).
Edge-based Edges are the atomic entities across which a tri-
angulated surface may be considered flexible. In graphics, a com-
mon model for integrated discrete mean curvature associated with
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an edge e is given by the product of dihedral angle and edge length,
H(e) = (π − θe) · ‖e‖. This version was derived in the con-
text of geometric measure theory [Cohen-Steiner and Morvan 2003]
and found high-quality applications in modeling thin shells [Grin-
spun et al. 2003]. In [Bridson et al. 2003] a similar model was
used, by replacing (π − θe) by cos(θe/2). Obviously, these two
versions agree (up to a factor of two) in the limit of small angles
between normals (θe → π). Coming from a different direction,
in [Bobenko 2005] a version of integrated mean curvature squared
was introduced, based on the intersection angles of circumcircles.
This model is a priori a functional version of H2, as opposed to
starting out with a functional representation of H—a nontrivial in-
sight. Note that this is done in a functional perspective, so it does
not a priori give a model of discrete mean curvature itself. However,
this concept is still found to be intimately linked to the previous two
in the limit of the planar case [Bobenko 2005].

Linear edge-based model Although various nonlinear dis-
crete models for mean curvature agree for small deformations, we
are interested in a linear model that is also valid for large defor-
mations. Consequently, one might be tempted to impose the lin-
ear model for small displacements onto the case of large defor-
mations. This ad hoc view can be formalized by considering so-
called “Crouzeix-Raviart linear finite elements” and obtaining a lin-
ear model for the mean curvature normal (cf. Appendix B). Such a
linear model was proposed in [Hildebrandt and Polthier 2004],

H(e) = −2 cos
θe

2
· ‖e‖ ·Ne,

where Ne is the (angle-bisecting) normal vector to e of unit length.
Note that unlike the scalar-valued mean curvature, H is a vector,
and the norm of H corresponds to the (scalar) mean curvature. We
make two practical observations: The first observation about this
version is that it is linear in vertex positions of the mesh (cf. Ap-
pendix B). The second observation is that the norm of this operator,
‖H(e)‖, agrees with the above nonlinear models, up to first or-
der, in the limit of the planar case. This linear version of the mean
curvature vector will hence serve as the basis for our desired dis-
crete IBM. As a corollary, we find that in the limit of small dihedral
angles, the discrete IBM will match the bending stiffness of the
original nonlinear model. Consequently, the material stiffness co-
efficients of the original model will carry over to the discrete IBM,
eliminating a need to search for new material parameters.

Vertex-based Vertex-centered discrete mean curvatures are ob-
tained by choosing one of the above edge-based models and sum-
ming the contributions from all edge-based curvatures of incident
edges,

H(p) =
1

2

X
e3p

H(e).

The factor 1/2 is due to the fact that we treat integrated quantities
here, and each triangle in the vertex star of a vertex p is seen by
exactly two edges.

Discrete Laplacian Recall that in the continuous setting, the
mean curvature normal is intimately related to the Laplacian: H =
∆I. Given a discrete model of a Laplacian L (such as obtained
by finite elements, cf. Appendix B), one can view L~I as a discrete
mean curvature functional, where the vector ~I corresponds to the
coefficient vector of positional degrees of freedom. By the above,
the corresponding discrete mean curvature function reads

~Hd = M−1(L~I) , (3)

where the vector ~Hd corresponds to pointwise (average, not in-
tegrated) mean curvature normals, and the mass matrix M is the

area-scaling matrix we discussed above. In Appendix B we give
a concise finite element view of these relations. While the path
from L to ~Hd is well-understood, the opposite direction is rela-
tively unexplored. Given a discrete mean curvature normal, such
as from [Bridson et al. 2003; Grinspun et al. 2003; Cohen-Steiner
and Morvan 2003], we may consult (3) to define L—here again (3)
will hold by construction. In Appendix C we outline a procedure
for uniquely recovering L given a (possibly nonlinear in positions)
discrete mean curvature. To summarize, we have imposed that the
mathematical relation in the continous setting (H = ∆I) by con-
struction carries over to the discrete setting (~Hd = M−1(L~I)).

2.2 Discrete isometric bending model

Given a discrete mean curvature normal, ~Hd, we can—in perfect
analogy to the smooth case—define the discrete IBM

Ed =

Z
S

〈Hd,Hd〉dvol .

The concrete value of this energy will depend on which version of
L (consequently Hd) is used. In general, this discrete energy takes
the form

Ed(I) = ~IT (LT M−1 L)~I .

The form of Ed(I) reveals two crucial properties: (i) it is invari-
ant under rigid transformations and uniform scaling, and (ii) it is
quadratic in positions in the class of isometric deformations, which
include arbitrarily large bending away from the initial shape. A
third property is that the energy Hessian K = LT M−1 L allows
for a geometric interpretation: L is invariant under conformal de-
formations (it only depends on angles), whereas the entries of M
correspond to area.

We now show how to apply the discrete IBM to obtain significant
speedups in situations of a cloth solver and geometric modeling
application.

3 Application to the bending of cloth and
plates

Isometric bending model For cloth simulation, we chose to
implement the simplest “hinge” IBM, whose local stencil matches
that of the nonlinear hinge model. The simple tools required to
implement this IBM are given in Appendix A.

The hinge IBM uses the nonconforming (edge-based) finite el-
ement theory summarized in Appendix B. Despite deferring to an
edge-based FEM, we emphasize that all DOFs are associated to
vertices. In other applications, a vertex-based (conforming FEM)
formulation was used by [Clarenz et al. 2004] among others. Here
we are primarily interested in the nonconforming FEM formula-
tion since it (a) reflects the flexibility of triangle meshes at edge
hinges and by the above discussion it (b) leads to an energy that in
the limit of planar rest state coincides with previously considered
bending energies built from nonlinear models up to second order.

Numerical treatment Whether in the high-fidelity or interac-
tive setting, rapid simulation requires an efficient numerical inte-
grator for second order initial value problems (IVPs) of the form

M Ï(t) = f(t, I(t), İ(t)) , (4)

where M is the (physical) mass matrix; f(t, I(t), İ(t)) are forces
depending on time, position, and velocity; and the initial position
and velocity of the cloth are prescribed [Hauth 2004]. For analysis
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one often introduces velocity as a separate variable, rewriting the
above as a coupled first-order system,„

Id 0
0 M

«„
İ(t)

V̇(t)

«
=

„
V(t)

f(t, I(t),V(t))

«
,

with appropriate initial conditions. The temporal discretization of
this system is a well-studied and active area of applied mathemat-
ics and computational mechanics, with a host of attendant meth-
ods. For treatments tailored to cloth simulation we refer the reader
to [Baraff and Witkin 1998; Etzmuss et al. 2000; Hauth and Etz-
muss 2001; Choi and Ko 2002; Ascher and Boxerman 2003; Brid-
son et al. 2003; Hauth et al. 2003; Boxerman and Ascher 2004;
Hauth 2004]).

As a general observation, each force may be treated explic-
itly or implicitly. An explicit treatment requires the (possibly re-
peated) evaluation of the force per discrete time step; an implicit
method requires additionally the (possibly repeated) evaluation of
the force Jacobian per discrete time step. In the case of a conserva-
tive force, such as elastic bending, the force Jacobian is minus the
energy Hessian. In the case of a dissipative Rayleigh force, such
as damping of the bending modes, the Jacobian is expressed as a
linear combination of the physical mass and energy Hessian. Et-
zmuss, Hauth et al. [2000; 2001; 2003; 2004] as well as Ascher
and Boxerman [2003; 2004] analyzed the behavior of time integra-
tion schemes and presented arguments for the adoption of implicit-
explicit (IMEX) integrators; Bridson et al. [2003] presented a semi-
implicit method that treats damping implicitly and elastic forces ex-
plicitly. Our results indicate that IBM accelerates both explicit or
implicit treatments of bending.

Results We compare the computational cost and visual qual-
ity of the isometric bending energy to the widely-used bending
(“hinge”) energy described in [Baraff and Witkin 1998; Bridson
et al. 2003; Grinspun et al. 2003], for regular- and irregular-meshes
ranging from 400 to 25600 vertices, on a draping problem as well
as a dynamic billowing flag. Figures 1-2 and the accompanying
movie provide a qualitative point of comparison between IBM and
the nonlinear hinge model.

Implementing the isometric bending model is straightforward,
requiring the (precomputed) assembly of the Hessian matrix (coeffi-
cients of LT M−1 L are given in the Appendix), and a matrix-vector
multiplication to compute the forces (−LT M−1 L)~I. In contrast,
an efficient implementation of a nonlinear model such as a hinge
spring requires both significant (human and computer) gradient cal-
culations, or leads to adoption of costly automatic-differentiation
techniques [Grinspun et al. 2003]. For comparison of computa-
tional efficiency, our implementation of the hinge forces and Jaco-
bians was hand tuned and not based on automated methods.

Replacing the nonlinear hinge model with quadratic IBM re-
duces bending force computation cost by seven- to eleven-fold.
Where a force Jacobian is required, IBM’s constant Hessian is pre-
computed once and stored in a sparse matrix datastructure, elim-
inating the computational cost of bending Jacobian assembly. Of
course, the actual net performance improvement in any given ap-
plication depends on the fraction of total computation associated to
bending.

Test setup To estimate this, we implemented both the implicit
solver framework of [Baraff and Witkin 1998] as well as a simple
explicit Euler solver. Our choice of solvers is motivated by a de-
sire to estimate profitability of incorporating IBM whether or not a
framework requires bending force Jacobians. The test framework
incorporates: (a) the usual constant strain linear finite element for
membrane response [Zienkiewicz and Taylor 2000; Hughes 1987],
which computationally is at least as costly as the membrane model
proposed in [Baraff and Witkin 1998]; (b) the robust collision de-
tection and response methods of [Bridson et al. 2002], augmented

Figure 2: Final rest state of a cloth draped over a sphere, for
(left) the proposed isometric bending model and (right) the widely-
adopted nonlinear hinge model.

with k-DOP trees [Klosowski et al. 1998]; (c) the PETSc solver
library [Balay et al. 2001]. Further optimization of our collision
detection using [Govindaraju et al. 2005] is likely to reduce the
overhead of collision computations for large meshes. For a more
detailed comparison, see Table 1. We observe a consistent reduc-
tion in total computational cost compared to the nonlinear hinge
model, across the two problem setups, two mesh types, and resolu-
tions ranging from 400 to 25600 vertices.

Draping cloth. We simulated the draping of a square sheet over
a sphere. As shown in Figure 2, the draped cloths are qualita-
tively similar in their configuration and distribution of wrinkles
and folds. Since only the final draped state was important, we
introduced a dissipative Rayleigh force allowing for larger time
steps [Hughes 1987]. For this example we might also consider a
quasistatic method, as recently considered in [Teran et al. 2005].
Since quasistatics requires repeated evaluation of forces and their
Jacobian, the proposed bending model will also be profitable in the
quasitatic setting. Together Figures 2-3 capture the behaviour of
IBM under a range of bending stiffnesses.

Billowing flag. We simulated the dynamics of a flag under wind.
As shown in the accompanying movie (see also Fig. 1) the motion
of the flag is qualitatively unaffected when we substitute the more
economical quadratic bending energy. Furthermore, we found that
there is no need to readjust material parameters when switching
from the nonlinear hinge to the IBM model; this is not unexpected
in light of the link between the two energies, as discussed in §2.
We modeled wind by a constant homogeneous velocity field, with
force proportional to the projection of the wind velocity onto the
area-weighted surface-normal. For more sophisticated effects of
wind fields on cloth see [Keckeisen et al. 2004]. Purely for contrast
with the draping example, we did not introduce any specific damp-
ing forces, although the implicit Euler method is known to exhibit
numerical damping.

IMEX methods. We stress that the proposed model is not spe-
cialized to our test framework. Consider for example the in-
tegration of the IBM into the framework described by Bridson
et al. [2003], which treats elastic (position-dependent, velocity-
independent) forces explicitly, and treats damping forces implic-
itly. With IBM both force and Jacobian computation is greatly
reduced; therefore explicit, implicit, and semi-implicit treatments
are all prime candidates. Bridson et al. describe a very efficient
matrix-free solver strategy, involving as few as one to two conju-
gate gradient iterations: this heightens the relevance of fast (elastic
and damping) bending force computations, since with fewer conju-
gate gradient iterations, the balance of computation shifts further to
the computation of the cached nonlinear position-dependent terms
as well as the algebraic system’s right hand side. In incorporating
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Draping problem regular mesh (resolution, in no. vertices) irregular mesh (resolution, in no. vertices)
400 1600 6400 25600 450 2100 6500 22500

Gradient nonlinear hinge 0.937 3.45 16.4 66.6 1.10 5.43 17.6 67.8
cost (ms) quadratic IBM 0.081 0.338 2.19 9.15 0.098 0.494 2.32 9.68
Hessian nonlinear hinge 12.8 54.2 218    890. 15.2 77.2 246    888    
cost (ms) quadratic IBM 0.237 0.963 3.87 15.7 0.266 1.28 3.99 13.6
Explicit step nonlinear hinge 3.81 6.64 27.5 112. 2.16 9.53 31.4 140.
cost (ms) quadratic IBM 2.63 2.90 11.9 48.8 0.964 4.35 15.2 76.5
Implicit step nonlinear hinge 28.6 138    470. 1730    33.9 219    557    1880    
cost (ms) quadratic IBM 11.0 62.7 168    505    13.6 103    219    612    

Flag problem regular mesh (resolution, in no. vertices) irregular mesh (resolution, in no. vertices)
400 1600 6400 25600 450 2100 6500 22500

Gradient nonlinear hinge 0.975 3.99 16.0 64.0 1.10 5.43 17.8 68.7
cost (ms) quadratic IBM 0.085 0.341 2.14 8.75 0.099 0.490 2.31 9.28
Hessian nonlinear hinge 13.4 54.8 212    849    15.2 77.4 247    887    
cost (ms) quadratic IBM 0.251 0.974 3.79 14.99 0.267 1.30 3.96 13.7
Explicit step nonlinear hinge 1.73 7.05 27.7 112. 1.97 9.80 32.7 134    
cost (ms) quadratic IBM 0.780 3.26 13.3 53.4 0.900 4.54 16.1 70.0
Implicit step nonlinear hinge 27.6 106    420. 1680    33.5 155    513    1880    
cost (ms) quadratic IBM 9.53 32.9 127    490    12.5 50.4 166    608    

Table 1: Computational cost per time step for a variety of regular- and irregular-mesh resolutions, comparing our quadratic energy to the
popular nonlinear hinge energy. Costs reported include the time required for collision detection and response. These tests were conducted on
a single process, Pentium D 3.4GHz, 2GB RAM.

IBM in this context, the requisite matrix-vector multiplication may
be distributed, (Km + Kb)~I = Km

~I + Kb
~I, where the precom-

puted Kb is a multiple of the constant bending Jacobian, and Km

is the membrane Jacobian.
In any practical application, the final decision on incorporating

a proposed technique hinges on the implementation cost and perfo-
mance benefit of the method. We have presented a model for bend-
ing that involves simply computing the entries of a sparse matrix.
This computation is straightforward, and all details are outlined in
the Appendix. Finally, incorporation of the proposed model is a
minimally-invasive task. Given these considerations, we suggest
that it will be straightforward to evaluate the efficacy of the pro-
posed model within the reader’s preferred cloth simulation frame-
work.

3.1 Geometric Modeling

The Willmore energy of a surface is given as

EW (I) =

Z
S

(H2 −K)dvol =
1

4

Z
S

(κ1 − κ2)
2dvol.

As noted in [Bobenko et al. 2005], immersions that minimize
Willmore energy are of interest in a range of areas, including
the study of conformal geometry [Blascke 1929; Willmore 2000],
physical modeling of fluid membranes [Canham 1970; Helfrich
1973], and our focus in this example, geometric modeling. For sur-
faces without boundary and surfaces whose boundary is fixed up to
first order, the Willmore functional is variationally equivalent to the
functional (1). The corresponding geometric flow

Ṡ = −∇E(S),

has spurred many applications for surface fairing and restora-
tion [Yoshizawa and Belyaev 2002; Bobenko et al. 2005; Clarenz
et al. 2004; Schneider and Kobbelt 2001]. One of the earliest exam-
ples of discrete Willmore flow was implemented in Ken Brakke’s
Surface Evolver [Hsu et al. 1992]. This work uses the cotan-
gent formula to discretize mean curvature, and explicit time step-
ping. Yoshizawa et al. [2002] discretize explicit expressions for
forces obtained from the variation of the Willmore energy, and
use the cotangent formula to discretize both the mean curvature
and Laplace-Beltrami operator in the force expression. Explicit

timestepping is used and an additional tangential component is
added to the forces to improve the quality of the evolving mesh.
Clarenz et al. [2004] discretize the variation of the Willmore en-
ergy in terms of finite elements and treat the corresponding L2-flow
by a coupled system of second order equations. Finally, Bobenko
et al. [2005] introduced a circle-based conformally invariant Will-
more energy discretization in their flow formulation.

In geometric hole-filling applications (see Fig. 5) the flow is
integrated to its stationary limit. In smoothing applications (see
Figure 4) the flow is integrated over a prescribed duration, and
longer integration times smooth progressively coarser spatial fre-
quencies. Thus the flow duration effectively controls a trade-off be-
tween keeping and discarding the initial geometry in exchange for
the “smoothest” immersion of a given genus satisfying prescribed
G1 boundary conditions.

Discrete IBM in Willmore solver Our discrete isometric
bending model can be readily used for an efficient Willmore solver.
For the forces we can consider the complete gradient of the energy,
not assuming any specific type of deformation. For the Jacobian
of forces we use our discrete IBM, together with a Cholesky di-
rect solver. We need only compute the local stiffness matrices once
at the beginning of time, allowing us to pre-factor (symbolically)
the Jacobian matrix before the flow begins. Our focus here is on a
formulation that facilitates rapid computation at nearly interactive
rates while visually maintaining good surface quality (see Figs. 4
and 5).

Implementation Our implementation uses semi-implict back-
wards Euler time integration using as a linear solver the PAR-
DISO [Schenk and Gärtner 2004] LLT direct solver. We report
computation times for a single process running on a 2GHz note-
book with 2GB RAM.

One avenue for extending our application would be to incorpo-
rate a reparameterization flow, such as the special tangent speed
component that Yoshizawa and Belyaev used to improve the qual-
ity of the evolving mesh [Yoshizawa and Belyaev 2002].

4 Conclusion and Future Work

The idea presented above is to formulate the bending energy in
terms of the Laplace-Beltrami operator endowed with the metric
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Figure 3: Deformations are primarily characterized by the ratio of bending to membrane stiffness. Despite having forces linear in positions,
the quadratic bending model is valid over a broad range of stiffness values. Shown here (left to right): 10−5 : 1, 10−3 : 1, and 10−2 : 1.

Figure 4: Initial and final frames of Willmore flow applied to
smooth (top) a 44928 triangle dinosaur and (bottom) a 24192 tri-
angle hand at interactive rates. 16 smoothing steps require a total
of 7.47s and 4.42s, with one-time factorization costing 8.77s and
5.31s, for the dinosaur and the hand, respectively. Images rendered
with flat shading.

of the deformed surface. We leave as open directions two gener-
alizations of this idea. The first is to replace the Laplace-Beltrami
with an arbitrary second-order differential operator. The second is
to consider bending energies that are minimized by a nonflat refer-
ence surface.

Anisotropic energy A generalization of H = ∆I holds for
any directional curvature, κi, along a direction vi: κin = d2

ds2
i
I ,

where n is the surface normal, and derivatives are taken with respect
to an arc length, si, of a curve with the direction vi at the point
of interest. One may interpret this as the one-dimensional case of
H = ∆I applied to the intersection curve of the surface and a plane
passing through n, vi. Indeed, mean curvature may be recovered by
summing the applications of the above equation evaluated for the
two principal curvature directions. In analogy to (1), we may use
κiκj = g(d2/ds2

i I, d2/ds2
jI) to define anisotropic energies of the

Figure 5: Initial and final frames of Willmore flow applied to solve
two tasks posed by Bobenko and Schröder. (top) Smoothing a 4-
times subdivided icosahedron into a sphere and (bottom) a hole fill-
ing problem. The sphere converged in 120ms (12ms × 10 smooth-
ing steps), with 200ms for Hessian prefactorization. The hole fill-
ing problem required 640ms after 120ms for prefactorization. Ren-
dered with flat shading.

form:

Eaniso(S) =

Z
S

c1κ
2
1 + c2κ1κ2 + c3κ

2
2 dvol .

Spontaneous curvature or nonflat reference surface We
have observed that our isometric simplification is applicable to any
energy obtained as a linear combination of squared directional cur-
vatures, or, in other words, squared entries of the shape operator
matrix in a local parametrization.

For nonflat configurations, a typical energy expression remains
the same but with the shape operator S replaced with the difference
of the shape operators S−S0 where S0 is the shape operator of the
undeformed surface. In this case, the energy is no longer quadratic
in embedding coordinate functions of the deformed surface; one
can easily show however that it is cubic. This fact can potentially
be used to obtain simpler computations for gradients and Hessians
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of the discretized bending: while the energy matrix is no longer
constant, it is linear in deformed coordinates so can be computed
more efficiently than in the general case.

Appendix A

Isometric quadratic hinge model We briefly lay out the
complete set of tools required to assemble the hinge-stenciled
isometric bending model. The Hessian, K = LT M−1 L,
is assembled in the usual manner of finite-element stiffness
matrices [Zienkiewicz and Taylor 2000], i.e., by considering
contributions from each local stiffness matrix, Ki, centered about
edge ei with stencil consisting of the triangle(s), t0, t1, incident to
ei and their incident vertices, v0, v1, v2, v3. With reference to the
illustration,

e0

e2 e4

e3e1

x0

x2

x1

x3

t0

t1
A =

1

2

0BBB@
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

1CCCA ,

we build Ki = AT (LT
i M−1

i Li)A, where Mi =
1
3
(area(t0) + area(t1)) is the scalar mass of ei, A is the

change of basis matrix taking vertex DOFs to edge DOFs, and Li

corresponds to the ith row of the edge-based Laplacian,

Li = (c01 + c02 + c03 + c04,−c01,−c02,−c03,−c04),

where cjk = 2 cot ∠ej , ek. The local energy is obtained by ap-
plying the quadratic form Ki to the vertex vector (x0, x1, x2, x3);
the global (total) energy of the system is obtained by summing over
all local contributions corresponding to interior edges ei. These
formulas are derived in the context of nonconforming (edge-based)
finite elements. The necessary background is provided in Appendix
B.

Appendix B

Discrete Laplacians We provide the necessary background on fi-
nite elements. In particular, we give a discussion of conforming and
nonconforming elements. The difference is in the degree of free-
doms (DOFs): conforming elements have their DOFs at vertices,
and nonconforming ones have their DOFs at edges. Moreover, we
relate the functional perspective of the linear model for the mean
curvature vector to a discrete Laplacian. Finally, we derive a repre-
sentation of the mean curvature normal as a (3-valued) function.

Conforming setting Our surfaces are discerized by piecewise
linear elements, consisting of vertices, edges, and triangular faces.
Along this line, it is natural to discretize functions over such sur-
faces in a piecewise linear fashion, with degrees of freedom as-
signed to vertices. In particular the embedding of a mesh I : S →
E3 becomes a (3-valued) PL function. Using PL functions, it nat-
urally follows to discretize the Laplace-Beltrami according to a
finite element (FEM) representation. Disregarding boundary ver-
tices, this reads

∆u(p) = −
Z

S

〈∇u,∇Φp〉dvol,

where the Φp are Lagrange nodal basis functions (taking value 1
at p and 0 at all other vertices). This is well-known to exactly cor-
respond to the cotan representation [Pinkall and Polthier 1993] at

each inner vertex p of S:

∆u(p) = −1

2

X
q

(cot αpq + cot βpq)(u(p)− u(q)),

where the sum is taken over all vertices q sharing an edge with
p, and αpq and βpq are the opposite angles to the edge p̄q in the
two triangles sharing that edge. It is important to note that ∆u
is no longer a function since differentiating a PL function twice
takes values in the space of distributions. Instead, according to (1),
∆u(p) = (∆u)(Φp) represents the value of the functional ∆u ap-
plied to the Lagrange basis function Φp. The conforming stiffness
matrix is given by

Lpq =

Z
S

〈∇Φp,∇Φq〉dvol.

Dealing with zero-boundary conditions throughout, the number of
rows of (Lpq) correspond to inner vertices, its columns to all ver-
tices of the mesh.

Nonconforming setting In the nonconforming setting, the
DOFs are associated with edges. In particular, a basis is given
by PL mid-edge functions (Φe) (so-called Crouzeix-Raviart ele-
ments [1973]): To be precise, Φe is given by putting the value 1 at
the edge midpoint of edge e and the value zero at all other edge mid-
points, followed by PL interpolation over triangles. Note carefully
that unlike the conforming functions Φp, the mid-edge functions Φe

are not continuous. Instead they are merely mid-edge continuous.
The associated discrete Laplacian is edge-based,

∆u(e) = −
Z

S

〈∇u,∇Φe〉dvol,

where u is some linear combination of nonconforming basis func-
tions associated with internal edges. Again, the object ∆u is a
functional rather than a function. The corresponding stiffness ma-
trix is given as

Leiej =

Z
S

〈∇Φei ,∇Φej 〉dvol,

the number of rows of (Leiej ) correspond to inner edges, its
columns to all edges of the mesh.

Note that the space of conforming elements is a subspace of the
space of nonconfroming elements. In particular, the (continuous)
embedding I of the mesh can be written in a nonconforming basis;
and at inner edges one obtains

H(e) = ∆I(e).

This proves the claim that the linear mean curvature vector is linear
in mesh positions.

Mass matrix and mean curvature function So far we have
dealt with the functional viewpoint of the mean curvature normal.
This is indispensable for a mathematical analysis, such as treating
convergence [Hildebrandt et al. 2005]. However, for bending en-
ergy, such as defined in (1), we are forced to find a representation
of Hd as a (3-valued) PL function over S. Again, there is a con-
forming and a nonconforming version. By definition, this amounts
to finding the unique conforming (resp. nonconfroming) function
Hd having zero boundary conditions and for each interior vertex p
(resp. each inner edge e) satisfying

H(p) =

Z
S

Hc
d · Φp

„
resp. H(e) =

Z
S

Hnc
d · Φe

«
.
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By linearity this is to say that the L2 inner product of Hd with a
PL function u that vanishes at the boundary gives the same value as
the functional H applied to u. In basis representation, this L2 inner
product is given by the mass matrix M, that is

Mpq =

Z
S

Φp · Φq,

„
resp. Meiej =

Z
S

Φei · Φej

«
.

In both cases, M is square, symmetric and invertible, its dimension
being the number of inner vertices (resp. inner edges). The contin-
uous PL embedding I can be expressed as

I =
X

p

~Ip · Φp

 
resp. I =

X
e

~Ie · Φe

!
,

the sum being taken over all vertices (resp. edges). In the con-
forming case, the vector ~I just corresponds to the vertex positions
of the mesh. The implementation of the nonconforming version is
equally simple: a basis change from conforming to nonconforming
elements is simply obtained by a matrix whose rows correspond to
the number of edges and whose columns correspond to the num-
ber of vertices - the only nonzero entries of this matrix take the
value 1/2, where each edge sees exactly its two boundary vertices,
cf. Appendix A. Similarly, the representation of Hd in terms of ba-
sis functions reads

Hc
d =

X
p

(~Hc
d)p · Φp

 
resp. Hnc

d =
X

e

(~Hnc
d )e · Φe

!
,

summing over all interior vertices (resp. interior edges).
In both cases the result may be written as ~Hd = (M−1 L)~I,

where the L and M are the conforming (resp. nonconforming) stiff-
ness and mass matrix. Since

Ed =

Z
S

〈Hd,Hd〉dvol,

this leads to

Ed(I) = (M−1 L~I)T M(M−1 L~I) = ~IT (LT M−1 L)~I.

The concrete value of this energy will depend on which version of
Hd is used - the conforming or the nonconforming one. In Ap-
pendix A we used the nonconforming version. The idea of em-
ploying nonconforming elements for treating discrete operators has
previously been employed for a theory of discrete minimal sur-
faces [Polthier 2002]. The conforming case of bending energy was
treated in the exact same manner as outlined above in [Clarenz et al.
2004] (and used therein for Willmore flow).

Appendix C

Laplacians vs. mean curvature We briefly sketch how to
move from a notion of a (discrete) Laplacian to a notion of (dis-
crete) mean curvature and vice-versa. As a first observation, any
model of a (discrete) Laplacian provides a model for a (discrete)
mean curvature vector by applying the Laplacian to the postion vec-
tor of the surface,

H = ∆I.

Examples of this observation include a Laplacian that is discretized
as the umbrella operator, and H = ∆I is used to translate be-
tween the position vector I and the so called delta coordinates H
(cf. Sorkine [2005] and references therein). Vice-versa, since we
are primarily interested in applications such as cloth simulation that

deal with flat (planar) metrics, we briefly sketch how to recover the
Laplacian from the knowledge of the mean curvature operator in
the case of small normal displacements u about a planar domain.
Consider the mean curvature operator H applied to a height field
u ∈ C2(R2). We can regard this as H : C2(R2) → C0(R2). It is
well-known that the linearization of this operator is the Laplacian
∆u. This can be transferred to the discrete case: given a trian-
gulation of the plane and considering a vector of normal displace-
ments, (ui), and a discrete operator H acting on (ui) that com-
putes discrete curvatures at vertices, the linearization of this opera-
tor (uniquely) determines a discrete model for a Laplacian.
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surfaces: A new paradigm for thin-shell finite-element analysis.
Internat. J. Numer. Methods Engrg. 47, 12, 2039–2072.

Discrete Differential Geometry: An Applied Introduction SIGGRAPH 2006

27



CLARENZ, U., DIEWALD, U., DZIUK, G., RUMPF, M., AND
RUSU, R. 2004. A finite element method for surface restora-
tion with smooth boundary conditions. CAGD, 427–445.

COHEN-STEINER, D., AND MORVAN, J.-M. 2003. Restricted
Delaunay triangulations and normal cycle. SoCG 2003, 312–
321.

CROUZEIX, M., AND RAVIART, P. A. 1973. Conforming and non-
conforming finite elements for solving stationary Stokes equa-
tions. RAIRO Anal. Numer. 7, 33–76.

DECKELNICK, K., DZIUK, G., AND ELLIOTT, C. M. 2005. Fully
discrete semi-implicit second order splitting for anisotropic sur-
face diffusion of graphs. SINUM 43, 1112–1138.

DESBRUN, M., SCHRODER, P., AND BARR, A. 1999. Interac-
tive animation of structured deformable objects. Proceedings.
Graphics Interface ’99, 1–8.

DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A. H.
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Figure 1: Geodesics on a surface and multiple locally shortest connections. Straightest geodesics are unique solutions to the initial value
problem for geodesics on polyhedral surface.

Abstract

Geodesic curves are the fundamental concept in geometry to gener-
alize the idea of straight lines to curved surfaces and arbitrary man-
ifolds. On polyhedral surfaces we introduce the notion of discrete
geodesic curvature of curves and define straightest geodesics. This
allows a unique solution of the initial value problem for geodesics,
and therefore a unique movement in a given tangential direction, a
property not available in the well-known concept of locally shortest
geodesics.

An immediate application is the definition of parallel translation
of vectors and a discrete Runge-Kutta method for the integration
of vector fields on polyhedral surfaces. Our definitions only use
intrinsic geometric properties of the polyhedral surface without ref-
erence to the underlying discrete triangulation of the surface or to
an ambient space.

Keywords: discrete geodesics, straightest geodesics, shortest
geodesics, polyhedral surfaces, intrinsic curves, parallel translation,
curvature.

1 Introduction

Geodesics on smooth surfaces are the straightest and locally short-
est curves. They generalize the concept of Euclidean straight lines

∗Originally published in: Mathematical Visualization, H.C. Hege and K.
Polthier (Eds.), Springer Verlag 1997. Reprinted in modified form with kind
permission of the publisher.

†e-mail: polthier@mi.fu-berlin.de
‡e-mail:schmies@math.tu-berlin.de

and play a fundamental role in the study of smoothly curved man-
ifolds. Two basic properties are responsible for their importance:
first, geodesics solve the initial value problem which states, that
from any point of a manifold there starts a unique geodesic in any
direction. Second, the length minimization property provides a
solution of the boundary value problem of connecting two given
points on a manifold with a locally shortest curve. On smooth sur-
faces geodesics possess both properties, in contrast to the situation
on polyhedral surfaces.

The aim of this paper is to define straightest curves on two-
dimensional polyhedral surfaces, as opposed to the concepts of lo-
cally shortest and quasi-geodesics. Such straightest geodesics will
uniquely solve the initial value problem on polyhedral surfaces, and
therefore allow to move uniquely on a polyhedral surface in a given
direction along a straightest geodesic until the boundary is reached,
a property not available for locally shortest geodesics. An appli-
cation of straightest geodesics is the definition of parallel transla-
tion of vectors and higher order numerical integration methods for
tangential vector fields. This allows the extension of Runge Kutta
methods to polyhedral surfaces.

We consider polyhedral surfaces as two-dimensional simplicial
complexes consisting of triangles. Each triangle has a flat metric
and the common edge of two neighbouring triangles has the same
length in both triangles. The definition of a metric on the polyhedral
surface only requires the specification of edge lengths and does not
refer to an immersion of the surface in an ambient space. This in-
trinsic approach allows the definition of straightest geodesics, dis-
crete geodesic curvature, vector fields, and parallel translation of
vectors in terms of the geometric data of the surface, such as edge
lengths, triangle angles, and discrete curvature properties.

Geodesics on polyhedral surfaces were intensively studied using
different definitions. The Russian school of A.D. Alexandrov
[Aleksandrov and Zalgaller 1967] defines geodesics on polyhedral
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surfaces as locally shortest curves which leads to important impli-
cations in the study of non-regular and regular differential geom-
etry. But shortest geodesics cannot be extended as shortest curves
across a spherical vertex with positive Gauß curvature as, for exam-
ple, the vertex of a cube. Beyond a hyperbolic vertex with negative
Gauß curvature there even exists a continuum of extensions. There-
fore, shortest geodesics fail to solve the initial value problem for
geodesics at vertices of a polyhedral surface.

A.D. Alexandrov also introduced the concept of quasi-geodesics
which are limit curves of geodesics on a family of converging
smooth surfaces. They form a wider class than shortest geodesics
and were amongst others studied by Pogorelov [Pogorelov 1952]
on convex polyhedral surfaces. A quasi-geodesic through a spheri-
cal vertex is a curve with right and left angles both less than π , and
therefore an inbound direction has multiple extensions.

Shortest geodesics appear in many practical applications. For ex-
ample, the optimal movement of a robot should have minimal
length in its parameter space. Such discrete minimization prob-
lems are studied in computational geometry, see for example Di-
jkstra [Dijkstra 1959], Sharir and Schorr [Sharir and Schorr 1986],
and Mitchell et.al. [Mitchell et al. 1987] for efficient algorithms
on the computation of the shortest path in graphs and in polyhedral
spaces.

Our paper starts in section 2 with a review of geodesics on smooth
surfaces, especially since some of their properties differ from those
of geodesics on polyhedral surfaces. In section 3 we will intro-
duce polyhedral surfaces as metric spaces and recall basic facts.
Straightest geodesics are defined in section 4 and discussed as solu-
tions of the initial value problem. In section 5 we imbed the notion
of straightest lines into the concept of discrete geodesic curvature
of arbitrary curves on polyhedral surfaces. This general setting is
more appropriate for our later discussions, and straightest geodesics
turn out to be those class of curves with vanishing discrete geodesic
curvature. As a validation of the definition we prove the Gauß-
Bonnet theorem using our notion of discrete geodesic curvature. In
section 6 we apply the concept to the definition of parallel transla-
tion of tangential vector fields and in section 7 we generalize Runge
Kutta methods to the numerical integration of ordinary differential
equations on polyhedral surfaces.

Applications of this paper are given in the video Geodesics and
Waves [Polthier et al. 1997]. The numerics were developed within
the visualization environment OORANGE [Gunn et al. 1997].

2 Review of Geodesics on Smooth Surfaces

Geodesics on smooth surfaces can be characterized by different
equivalent properties. The generalized properties on polyhedral
surfaces will no longer be equivalent and lead to different classes
of discrete geodesics. The following material can be found in any
introductory text book on differential geometry, see for example
[Carmo 1976].

Let M be a smooth surface and γ : I = [a,b] → M a curve
parametrized over an interval I. To avoid accelerations tangen-
tial to the curve we assume arc length parametrization, i.e. the
tangent vector has constant length |γ′| = 1. A curve γ is called
locally shortest if it is a critical point of the length functional
L(γ|[a,b]) := length(γ|[a,b]) with respect to variations tangential to
M which leave the endpoints fixed. Formally, if φ : I → Tγ M is a
tangential vector field along γ with φ(a) = 0 and φ(b) = 0, then we
have ∂

∂ ε L(γ + εφ)|ε=0 = 0. A critical point of the length functional

is usually not a global minimizer compared to curves with the same
endpoints.

On smooth manifolds the length minimizing property of geodesics
can be reformulated as an ordinary differential equation for γ ,
namely γ ′′(s)tan M = 0, the Euler-Lagrange equations of the vari-
ational problem.

The curvature κ(s) = |γ ′′(s)| of a curve measures the infinitesimal
turning of the tangent vector at every point γ(s). For curves γ on
surfaces M ⊂ R

3, the curvature can be decomposed into the curve’s
bending in the normal direction n of the surface and its bending in
the tangent space in direction of the binormal b. This decompo-
sition leads to the definition of the geodesic curvature κg and the
normal curvature κn of a curve:

κ2(s) =
∣∣γ ′′(s)∣∣2 (1)

=
∣∣∣γ ′′(s)tan M

∣∣∣2
+

∣∣∣γ ′′(s)nor M
∣∣∣2

= κ2
g (s)+κ2

n (s).

The geodesic curvature κg of a curve γ measures the tangential ac-
celeration. If κg = 0 then the curve varies up to second order only
in direction of the surface normal, therefore it is a straightest curve
on the surface. The normal curvature κn is related with the bending
of the surface itself and can be neglected from an intrinsic point of
view.
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Figure 2: Geodesic and normal curvature of a curve on a smooth
surface.

Summarizing, one characterizes smooth geodesics as follows:

Definition 1 Let M be a smooth two-dimensional surface. A
smooth curve γ : I → M with |γ ′| = 1 is a geodesic if one of the
equivalent properties holds:

1. γ is a locally shortest curve.

2. γ ′′ is parallel to the surface normal, i.e.

γ ′′(s)tan M = 0. (2)

3. γ has vanishing geodesic curvature κg = 0.

In section 4 we will consider geodesics on polyhedral surfaces and
notice that the polygonal equivalents of the above properties lead to
different notions of discrete geodesics.

The boundary value problem for geodesics has a solution in every
homotopy class and is usually not unique. On the other hand, we
have a unique solution for the initial value problem derived from
equation (2):
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Lemma 1 Let M be a smooth manifold. Then for any point p ∈ ◦
M

in the interior of M and any tangent direction v ∈ TpM the initial
value problem

γ ′′(s)tan M = 0 (3)

γ(0) = p

γ ′(0) = v

has a unique solution γ : [0, �) → M, where � is the length of the
maximal interval of existence.

3 Curvature of Polyhedral Surfaces

In this section we review some facts on the geometry of polyhe-
dral surfaces. Basic references are for example A.D. Alexandrov
and Zalgaller [Aleksandrov and Zalgaller 1967] and Reshetnyak
[Reshetnyak 1993]. For simplification we restrict ourselves to two-
dimensional surfaces consisting of planar triangles. A topological
triangle f in a two-dimensional manifold S is a simple domain f ⊂ S
whose boundary is split by three vertices into three edges with no
common interior points.

Definition 2 A polyhedral surface S is a two-dimensional manifold
(with boundary) consisting of a finite or denumerable set F of topo-
logical triangles and an intrinsic metric ρ(X ,Y ) such that

1. Any point p ∈ S lies in at least one triangle f ∈ F.

2. Each point p ∈ S has a neighbourhood that intersects only
finitely many triangles f ∈ F.

3. The intersection of any two non-identical triangles g, h ∈ F is
either empty, or consists of a common vertex, or of a simple
arc that is an edge of each of the two triangles.

4. The intrinsic metric ρ is flat on each triangle, i.e. each trian-
gle is isometric to a triangle in R

2.

Remark 1 Most of our considerations apply to a more general
class of length spaces. Each face may have an arbitrary metric as
long as the metrics of two adjacent faces are compatible, i.e. if the
common edge has the same length in both faces, and the triangle
inequality holds.

Let γ ⊂ S be a curve whose segments on each face are rectifiable.
Then the length of γ is well-defined and given by

Length(γ) = ∑
f∈F

Length(γ| f ). (4)

The neighbourhood of a vertex is isometric to a cone and is charac-
terized by the total vertex angle:

Definition 3 Let S be a polyhedral surface and v ∈ S a vertex. Let
F = { f1,..., fm} be the set of faces containing p as a vertex, and θi
be the interior angle of the face fi at the vertex p, compare figure
3. Then the total vertex angle θ (p) is given by

θ (p) =
m

∑
i=1

θi(p). (5)

Interior points p of a face or of an open edge have a neighbour-
hood which is isometric to a planar Euclidean domain and we de-
fine θ (p) = 2π .

All points of a polyhedral surface can be classified according to the
sign of the vertex angle excess 2π −θ (p):

�������������� ������������������������������
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Figure 3: Classification of vertices on a polyhedral surface accord-
ing to the excess of the vertex angle, and their unfolding in a planar
domain.

Definition 4 A vertex p of a polyhedral surface S with total vertex
angle θ (p) is called Euclidean, spherical, or hyperbolic if its angle
excess 2π −θ (p) is = 0, > 0, or < 0. Respectively, interior points
of a face or of an open edge are Euclidean.

The neighbourhood of a vertex can be isometrically unfolded to
a (partial or multiple) covering of a part of the Euclidean plane.
There exist three situations as shown in figure 3 which metrically
characterize the vertex. For example, the tip of a convex cone is
a spherical vertex and a saddle point is hyperbolic. On the other
hand, a spherical vertex need not be the tip of a convex cone. The
isometric unfolding of sets of a polyhedral surface is a common
procedure to study the geometry.

The Gauß curvature of a general manifold is a central intrinsic prop-
erty of the geometry and can be computed in terms of the metric.
It influences, for example, the parallel translation of vectors along
curves. The Gauß curvature of a piecewise linear surface is concen-
trated at the isolated vertices since all other points on the surface
have a neighbourhood isometric to a planar Euclidean domain with
zero curvature. It is therefore more appropriate to work with the
concept of total Gauß curvature.

� � � � � � � � � 	


 
 �

Figure 4: The Gauß map assigns to each point p ∈ S of a surface
its normal vector n(p) ∈ S

2. At edges and vertices of a polyhedral
surface the image of the Gauß map is the spherical convex hull of
the normal vectors of adjacent faces.

Using following definition the curvature can be measured directly
in metrical terms of the surface S.

Definition 5 The (total) Gauß curvature K(p) of a vertex p on a
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polyhedral surface S is defined as the vertex angle excess

K(p) = 2π −θ (p) (6)

= 2π −
m

∑
i=1

θi(p).

An immediate consequence is that Euclidean vertices have curva-
ture K = 0, spherical vertices have K > 0, and hyperbolic vertices
have K < 0. For example, the vertices of a cube each have Gauß
curvature π

2 .

For a smooth surface S embedded into R
3 the curvature measures

the infinitesimal turn of the normal vector of the surface and can be
defined via the Gauß map g : S → S

2 which assigns to each point
p on a surface S its normal vector n(p), see figure 4. The total
Gauß curvature K(Ω) of a domain Ω ⊂ S is given by the area of
its spherical image: K(Ω) = area g(Ω). It is an easy calculation to
show that this relation also holds for the Gauß curvature of a vertex
on a polyhedral surface.

4 Discrete Straightest Geodesics

Our approach to discrete geodesics on polyhedral surfaces concen-
trates on the property of a curve to be straightest rather than locally
shortest. Both properties are equivalent for geodesics on smooth
surfaces, as mentioned in section 2, but locally shortest curves on
polygonal surfaces do not allow a unique extension, for example,
beyond spherical vertices of the surface. The original motivation
for our study was to define a unique way to move straight ahead
in a given direction on a polyhedral surface. Applications are, for
example, the tracing of moving particles restricted to flow along a
polyhedral surface, the solution of initial value problems on poly-
hedral surfaces related with given tangential vector fields, and the
intrinsic generalization of numerical algorithms for ordinary differ-
ential equations to polygonal surfaces.

The concept of shortest geodesics in graphs, polyhedral manifolds,
and more general length spaces has been studied by a number of
authors in different fields, see for example [Dijkstra 1959][Mitchell
et al. 1987][Aleksandrov and Zalgaller 1967][Alexander and
Bishop 1996]. For our applications this concept has a central miss-
ing property, namely, the initial value problem for geodesics is not
uniquely solvable and in some cases has no solution: first, no short-
est geodesics can be extended through a spherical vertex since it
could be shortened by moving off the corner, and second, there
exists a family of possible extensions of a geodesic as a shortest
curve through a hyperbolic vertex: every extension with curve an-
gles θl ,θr ∈ [π,θ −π] is locally shortest where θ is the total vertex
angle. See lemma 2 and figure 5.

Quasi-geodesics are a different approach which was introduced by
A.D. Alexandrov (see the references to the original Russian lit-
erature in [Aleksandrov and Zalgaller 1967]) and investigated on
convex surfaces by Pogorelov [Pogorelov 1952] and others. They
appear as limit sets of smooth geodesics when smooth surfaces ap-
proximate, for example, a polyhedral surface. On polyhedral sur-
faces quasi-geodesics are characterized by their fulfillment of the
inequation |π −θl |+ |π −θr| − |2π −θl −θr| ≥ 0 at each point,
where θl and θr are the two angles of the curve, and θl + θr = θ
is the total vertex angle of the point. Compare figure 5 for the no-
tation. At hyperbolic vertices with θ > 2π the definition is iden-
tical to that for shortest geodesics, while at spherical vertices with
θ < 2π curves with π −θl ≥ 0 and π −θr ≥ 0 are quasi-geodesics.

In the following definition we introduce straightest geodesics which
are a new class of discrete geodesics on polyhedral surfaces. This
class has a non-empty intersection with the set of shortest geodesics
and is a subset of quasi-geodesics.

Definition 6 Let S be a polyhedral surface and γ ⊂ S a curve. Then
γ is a straightest geodesic on S if for each point p ∈ γ the left and
right curve angles θl and θr at p are equal, see figure 5.
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Figure 5: Notion of left and right curve angles θl and θr with θl +
θr = θ .

A straightest geodesic in the interior of a face is locally a straight
line, and across an edge it has equal angles on opposite sides. The
definition of straightest geodesics on faces and through edges is
identical to the concept of shortest geodesics but at vertices the con-
cepts differ. Our definition fits into the more general discussion of
discrete geodesic curvature of curves on a polyhedral surface, this
will be discussed in detail in section 5.

The following theorem proves the unique solvability of the initial
value problem for straightest geodesics. To state the problem we
start with the notion of a tangent vector on a polyhedral surface:

Definition 7 Let S be a polyhedral surface and p ∈ S a point. A
polyhedral tangent vector v with base point p lies in the plane of
an adjacent face and locally points into the face. The polyhedral
tangent space TpS consists of all polyhedral tangent vectors at p.

We remark, that the polyhedral tangent bundle TS can be equipped
with the structure of a topological vector bundle by introducing nor-
malized angles as in definition 10, but do not pursue this property.
Instead, we use the fact that polyhedral tangent vectors are charac-
terized solely by intrinsic properties of the geometry rather than by
reference to an ambient space.

Theorem 1 (Discrete Initial Value Problem) Let S be a polyhe-
dral surface and p ∈ S a point with polyhedral tangent vector
v ∈ TpS. Then there exists a unique straightest geodesic γ with

γ(0) = p (7)

γ ′(0) = v,

and the geodesic extends to the boundary of S.

Proof. There exists a face f of S which contains the initial point p
and, for a small number ε > 0, the straight line γ(t) := p+ tv with
t ∈ [0,ε). γ is a straightest geodesic and a solution of equation 7.
If we extend γ beyond the small interval and γ reaches an edge or
a vertex of S for larger values of t then definition 6 of straightest
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geodesics uniquely defines how to extend γ beyond the edge or ver-
tex. That is to proceed in that direction for which the left and right
curve angles of γ at the vertex are equal.

�

�

�

�

Figure 6: Locally shortest geodesics cannot be extended through a
spherical vertex p and there exist multiple continuations at a hyper-
bolic vertex q.

The concepts of straightest and shortest geodesics differ on poly-
hedral surfaces. For example, as shown in the following lemma,
the theorem above does not hold for locally shortest geodesics ap-
proaching a spherical or hyperbolic vertex. As long as a geodesic
γ does not meet a vertex of a polyhedral surface both concepts are
equal and γ is both, straightest and locally shortest. The following
lemma comprehends the differences:

Lemma 2 On a polyhedral surface S the concepts of straightest
and locally shortest geodesics differ in the following way (see figure
6):

1. A geodesic γ containing no surface vertex is both straightest
and locally shortest.

2. A straightest geodesic γ through a spherical vertex is not lo-
cally shortest.

3. There exists a family of shortest geodesics γθ through a hyper-
bolic vertex with the same inbound direction. Only one of the
shortest geodesics extends the inbound direction as straight-
est geodesic.

4. Straightest geodesics do not solve the boundary value prob-
lem for geodesics since there exist shadow regions in the
neighbourhood of a hyperbolic vertex where two points can-
not be joined by a straightest geodesic.

Proof. Ad 1.) We unfold the faces met by the geodesic to an isomet-
ric strip of faces in the Euclidean plane. The geodesic γ is unfolded
to a Euclidean straight line in the interior of the strip which is lo-
cally shortest and fulfills the angle condition of definition 6.

Ad 2.) Let γ be a straightest geodesic through a spherical vertex
with curvature K > 0. We unfold the adjacent faces to a planar
domain by cutting along the outbound direction of γ . The image
of γ in the plane has a corner at the vertex with curve angle θ

2 =
π − K

2 < π at both sides. Therefore, γ is not locally shortest since
it can be shortened by smoothing the corner in either direction as
shown on the left in figure 6.

Ad 3.) A hyperbolic vertex has curvature K < 0. Let γ0 be the
unique straightest geodesic though the vertex which extends the in-
bound direction. We unfold the adjacent faces to a planar domain by
cutting along the outbound direction of γ0, then γ0 has a curve angle
θ
2 = π − K

2 > π at both sides of the corner. Assume a curve with
the same inbound but a different outbound direction. Whenever
both angles between the inbound and outbound direction are bigger

than or equal to π , we cannot locally shorten the curve. Therefore
all such curves are locally shortest.

5 Discrete Geodesic Curvature

We define the notion of geodesic curvature of curves on piecewise
linear surfaces with the later aim of defining parallel translation of
vectors along arbitrary curves. Additionally, vanishing geodesic
curvature should characterize straightest geodesics. The definition
should comply with the known (total) curvature of polygons in the
Euclidean plane, and the Gauß-Bonnet equation should hold. In
the following, we assume curves to be smooth on faces and to
have well-defined polyhedral tangent directions at the edges and
vertices of the surface. Similar to the discrete Gauß curvature for
surfaces, the discrete geodesic curvature is the equivalent of the to-
tal geodesic curvature of smooth surfaces.

�
�
�

� �

�

�

�
�

��
� ��

�
�

Figure 7: The discrete geodesic curvature of a curve γ is the nor-
malized angle between γ and a discrete straightest geodesic δ .

Definition 8 Let γ be a curve on a polyhedral surface S. Let θ be
the total vertex angle and β one of the two curve angles of γ at p.
Then the discrete geodesic curvature κg of γ at p is given by

κg =
2π
θ

(
θ
2
−β

)
. (8)

Choosing the other curve angle β′ = θ −β changes the sign of κg.

Using the notion of discrete geodesic curvature we obtain a new
characterization of straightest geodesics since they bisect the total
vertex angle θ , i.e. β = θ

2 :

Lemma 3 Let S be a polyhedral surface and γ ⊂ S a curve. Then
γ is a straightest geodesic if and only if γ has vanishing discrete
geodesic curvature.

Remark 2 1.) Let γ be a polygon in the Euclidean plane S and
p ∈ γ be a vertex with curve angle β . Then the discrete geodesic
curvature equals the total curvature of γ at p defined by the spheri-
cal image of its normal vectors.
2.) Let S be a polyhedral surface and let γ touch a vertex p ∈ S,
i.e. β = 0. Then the geodesic curvature of γ at p is κg = π , i.e. it
can be measured in the Euclidean face and without influence of the
vertex angle θ at p.
3.) Shortest geodesics through a hyperbolic vertex with ver-
tex angle θ > 2π have geodesic curvatures κg in the interval[−π(1− 2π

θ ),π(1− 2π
θ )

]
.

Straightest geodesics are natural generalizations of straight lines in
Euclidean space. For example, geodesic triangles on surfaces can
be defined as simply connected regions bounded by three straightest
segments, and geodesic polygons as piecewise straightest curves.
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The Gauß-Bonnet theorem relates the topology and geometry of
surfaces. It is a remarkable consequence of the definition of discrete
geodesic curvature that this fundamental theorem still holds. In
fact, one can even reverse the arguments and derive our formula for
geodesic curvature from the requirement that the equation of Gauß-
Bonnet should hold.

There have been different formulations of the Gauß-Bonnet theo-
rem on polyhedral surfaces, each expressing the Euler characteris-
tic χ(Ω) of a domain Ω using different curvature terms. For exam-
ple, Reshetnyak [Reshetnyak 1993] only uses the Gauß curvature
of interior vertices and defines the curvature of the boundary curve
by κ = π − β , where β is the inner curve angle of the boundary.
We refine this approach and split his definition of boundary curva-
ture in two components, a geodesic curvature of the boundary curve
and a partial Gauß curvature, where the vertices p ∈ ∂Ω contribute
to the total Gauß curvature of Ω. The following natural definition
determines the contribution of boundary vertices to the total Gauß
curvature of Ω. The contribution is proportional to the curve angle
β :

Definition 9 Let Ω ⊂ S be a domain on a polyhedral surface with
boundary Γ = ∂Ω. If θ (p) is the total vertex angle and β (p) the
inner curve angle at a vertex p ∈ Γ, then the partial Gauß curvature
K|Ω of Ω at p is proportional to β :

K|Ω(p) =
β
θ

K(p). (9)

If β = 0 then the vertex has no partial Gauß curvature, and β = θ
leads to a full contribution of the total Gauß curvature K = 2π −θ
to Ω. In the following we simplify the notation by omitting the
subindex |Ω.

Theorem 2 (Discrete Gauss-Bonnet) Let S be a polyhedral sur-
face and Ω ⊂ S a domain with boundary curve Γ and Euler char-
acteristic χ(Ω). Then the equation

∑
p∈Ω

K(p)+κg(Γ) = 2πχ(Ω) (10)

holds where the total Gauß curvature of Ω includes the partial
Gauß curvature at boundary points. If Γ is piecewise straightest
then the total geodesic curvature is the sum of the geodesic curva-
ture at the vertices of Γ.

Proof. For the proof we use the version

∑
p∈

◦
Ω

K(p)+ ∑
p∈Γ

(π −β (p)) = 2πχ(Ω)

proved by Reshetnyak [Reshetnyak 1993] where only interior ver-
tices of Ω contribute to the total Gauß curvature. Let p ∈ Γ be a
boundary vertex, then we have the splitting

K|Ω(p)−κg(p) = π −β (p)

which proves the assumption.

6 Parallel Translation of Vectors

Numerical methods for the integration of ordinary differential equa-
tions rely on the possibility for parallel translation of vectors in the
Euclidean plane. For example, higher order Runge-Kutta methods
do several trial shots in a single integration step to compute the fi-
nal shooting direction and translate direction vectors to their current

positions. When transferring such integration methods to surfaces,
which are not described by local charts, it is necessary to compare
vectors with different base points on the curved surface.

We use the notion of polyhedral tangent vectors formulated in def-
inition 7 and define an intrinsic version of parallel translation of
vectors which uses no ambient space as reference. We start with
two definitions of angles:

Definition 10 Let S be a polyhedral surface and p ∈ S a point with
total vertex angle θ . The Euclidean angle �(v,w) between tangent
vectors v,w ∈ TpS is the angle between corresponding vectors in
the unfolded neighbourhood of p measured in R

2, i.e. �(v,w) ∈[
− θ

2 , θ
2

]
. The normalized angle α(v,w) is obtained by scaling:

α(v,w) :=
2π
θ

�(v,w). (11)

The normalized and Euclidean angles are identical at points which
are not vertices of the surface. In practical applications one mea-
sures the Euclidean angle at first, and then uses the normalized an-
gle to avoid case distinctions at vertices of the surface as seen, for
example, in the following lemma:

Lemma 4 Let Δ be a geodesic triangle on a polyhedral surface S
whose edges are straightest segments. If α1, α2, and α3 are the
normalized angles of Δ then we have

α1 +α2 +α3 −π =
∫

Δ
K. (12)

Proof. Denote the Euclidean angles of Δ with βi and the vertex an-
gles with θi . Then the geodesic curvature of the boundary of Δ at
one of its vertices is given by

κg =
2π
θ

(
θ
2
−β

)
= π −α (13)

and the assumption follows directly from the discrete Gauß-Bonnet
equation (10).
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Figure 8: Parallel translation of vectors along straightest geodesics
γ1,γ2 and an arbitrary curve δ .

On polyhedral surfaces we can use the concept of straightest
geodesics and normalized angles to define parallel translation along
geodesics and arbitrary curves similar to the smooth case:

Definition 11 Let γ : I → S be a parametrized straightest geodesic
on a polyhedral surface S. A tangential vector field v : I → TS
with v(s)∈ Tγ(s)S is a parallel vector field along γ if the normalized
angle α(v(s),γ ′(s)) is constant.

Definition 12 Let κg be the geodesic curvature of a curve γ : I → S
with γ(0) = p and let v0 ∈ TpS be a tangent vector with normalized
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angle α(0) := 2π
θ(p)�(v0,γ ′(0)). Then v0 uniquely extends to a par-

allel vector field v with v(s) ∈ Tγ(s)S along γ with v(0) = v0. v(s) is
defined by the normalized angle α(s) it encloses with γ′(s):

α(s) = α(0)+
∫ s

0
κg(t) dt. (14)

The formula is well-known for curves on smooth surfaces. In the
discrete situation we have made direct use of the definition of dis-
crete geodesic curvature and the notion of normalized angles at ver-
tices.

7 Runge Kutta on Discrete Surfaces

The tracing of particles on a surface by integrating a given vector
field with Euler or Runge Kutta methods requires an additional ef-
fort to keep the trace on the surface. For example, one may use
local coordinate charts of a surface to transform the integration to
the planar Euclidean domain. Here the metrical distortion between
surface and Euclidean domain must be respected and a preprocess-
ing step to generate the charts and transitions between neighbouring
charts is required.

If the vector field is given on a curved surface in an ambient space,
say R

3, then a usual tangent vector “points into the ambient space”,
leading the numerical particle trace off the surface without addi-
tional projection methods.

The concepts of straightest geodesics and polyhedral tangent vec-
tors offer an intrinsic tool to solve these problems. In Euclidean
methods, the vector v|γ(s) is interpreted as tangent vector to the par-
ticle trace γ(s), and the straight line through γ(s) with direction
v|γ(s) is the first order approximation of γ . The idea on surfaces is
to use polyhedral tangent vectors defined in definition 7 and to re-
place the straight line with a straightest geodesic through γ(s) with
initial direction v|γ(s):

Definition 13 (Geodesic Euler Method) Let S be a polyhedral
surface with a polyhedral tangential vector field v on S, let y0 ∈ S be
an initial point, and let h > 0 a (possibly varying) stepsize. For each
point p ∈ S let δ (t, p,v(p)) denote the unique straightest geodesic
through p with initial direction v(p) and evaluated at the parame-
ter value t. A single iteration step of the geodesic Euler method is
given by

yi+1 := δ (h,yi,v(yi)). (15)

This produces a sequence of points {y0,y1, ...} on S which are
connected by straightest geodesic segments of length h. For each
i ∈ {0,1, ...} we define

γ(ih+ t) := δ (t,yi,v(yi)), t ∈ [0,h] (16)

and obtain a piecewise straightest, continuous curve γ : [0, �) → S
of some length � such that each segment γ|[ih, (i+1)h] is a straightest
geodesics.

The definition of the geodesic Euler method is intrinsic and no pro-
jection of the tangent vectors or tangent directions onto the surface
are required during integration. If the original vector field is not a
polyhedral tangential field then an initial generation of a polyhedral
tangential vector field is required in a preprocessing step, however,
this step is part of the formulation of the numerical problem and not
of the integration method.

Using the concept of parallel translation it is straight forward to
define higher order integration methods in a similar intrinsic way.

Figure 9: The two piecewise straightest geodesics are solutions
computed with the geodesic Euler method (outer curve, stepsize
h) and 4th order Runge Kutta method (inner curve, stepsize 4h).
Note, that the geodesic segments extend across triangle edges and
vertices. Also, a comparison with the underlying flow shows the
expected better approximation quality of the geodesic Runge-Kutta
method.

For simplicity, we restrict to a 4-th order geodesic Runge Kutta
method:

Definition 14 (Geodesic Runge-Kutta Method) Let S be a poly-
hedral surface with a polyhedral tangential vector field v on S, let
y0 ∈ S be an initial point, and let h > 0 a (possibly varying) stepsize.
For each point p ∈ S let δ (t, p,v(p)) denote the unique straightest
geodesic through p with initial direction v(p) and evaluated at the
parameter value t. A single iteration step of the geodesic Runge
Kutta method is given by

yi+1 := δ (h,yi,vi) (17)

where the direction vi is a polyhedral tangent vector at yi obtained
as follows: we denote the parallel translation of vectors along a
geodesic δ to δ (0) by π|δ and iteratively define

v1
i : = v(yi) (18)

v2
i : = π|δ1

◦v(δ1(
h
2
,yi,v

1
i ))

v3
i : = π|δ2

◦v(δ2(
h
2
,yi,v

2
i ))

v4
i : = π|δ3

◦v(δ3(h,yi,v
3
i ))

and

vi :=
1
6
(v1

i +2v2
i +2v3

i +v4
i ) (19)

where the curves δi are straightest geodesics through yi with initial
direction v j

i for j ∈ {1,2,3}.

8 Conclusion

On polyhedral surfaces we introduced the concept of straightest
geodesics and discrete geodesic curvature of curves. We applied the
concept to define the parallel translation of tangential vectors and
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generalized Runge Kutta methods to polyhedral surfaces. These
concepts allow a uniform and intrinsic description of geometric and
numerical properties on polyhedral surfaces.
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Figure 10: Point waves on surfaces evolve through distance circles.
Each particle of the front moves along a straightest geodesic.

Figure 11: The front of a point wave on a polyhedral surface may
branch and hit itself depending on the curvature and topology of the
surface.
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Figure 12: Branching of point waves at the conjugate point on a
torus.

Figure 13: Discrete geodesics on faces and at edges are natural
generalizations of straight lines.

Figure 14: Minimizing length of curves may lead to different local
minimizers.

Figure 15: Each positively curved vertex on a polyhedral surface is
a conjugate point where all point waves branch.

Figure 16: Straightest geodesics are able to pass through vertices in
contrast to locally shortest geodesics.

Figure 17: Straightest geodesics have unique extensions like light
rays.
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Discrete Differential Forms for Computational Modeling
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1 Motivation
The emergence of computers as an essential tool in scientific re-
search has shaken the very foundations of differential modeling.
Indeed, the deeply-rooted abstraction of smoothness, or differentia-
bility, seems to inherently clash with a computer’s ability of storing
only finite sets of numbers. While there has been a series of com-
putational techniques that proposed discretizations of differential
equations, the geometric structures they are simulating are often
lost in the process.

1.1 The Role of Geometry in Science

Geometry is the study of space and of the properties of shapes in
space. Dating back to Euclid, models of our surroundings have
been formulated using simple, geometric descriptions, formalizing
apparent symmetries and experimental invariants. Consequently,
geometry is at the foundation of many current physical theories:
general relativity, electromagnetism (E&M), gauge theory as well
as solid and fluid mechanics all have strong underlying geometri-
cal structures. Einstein’s theory for instance states that gravitational
field strength is directly proportional to the curvature of space-time.
In other words, the physics of relativity is directly modelled by the
shape of our 4-dimensional world, just as the behavior of soap bub-
bles is modeled by their shapes. Differential geometry is thus, de
facto, the mother tongue of numerous physical and mathematical
theories.

Unfortunately, the inherent geometric nature of such theories is of-
ten obstructed by their formulation in vectorial or tensorial nota-
tions: the traditional use of a coordinate system, in which the defin-
ing equations are expressed, often obscures the underlying struc-
tures by an overwhelming usage of indices. Moreover, such com-
plex expressions entangle the topological and geometrical content
of the model.

1.2 Geometry-based Exterior Calculus

The geometric nature of these models is best expressed and elu-
cidated through the use of the Exterior Calculus of Differential
Forms, first introduced by Cartan [Cartan 1945]. This geometry-
based calculus was further developed and refined over the twentieth
century to become the foundation of modern differential geometry.
The calculus of exterior forms allows one to express differential
and integral equations on smooth and curved spaces in a consis-
tent manner, while revealing the geometrical invariants at play. For
example, the classical operations of gradient, divergence, and curl
as well as the theorems of Green, Gauss and Stokes can all be ex-
pressed concisely in terms of differential forms and an operator on
these forms called the exterior derivative—hinting at the generality
of this approach.

Compared to classical tensorial calculus, this exterior calculus has
several advantages. First, it is often difficult to recognize the
coordinate-independent nature of quantities written in tensorial no-
tation: local and global invariants are hard to notice by just star-
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ing at the indices. On the other hand, invariants are easily dis-
covered when expressed as differential forms by invoking either
Stokes’ theorem, Poincaré lemma, or by applying exterior differen-
tiation. Note also that the exterior derivative of differential forms—
the antisymmetric part of derivatives—is one of the most important
parts of differentiation, since it is invariant under coordinate system
change. In fact, Sharpe states in [Sharpe 1997] that every differen-
tial equation may be expressed in term of the exterior derivative of
differential forms. As a consequence, several recent initiatives have
been aimed at formulating the physical laws in terms of differen-
tial forms. For recent work along these lines, the reader is invited
to refer to [Burke 1985; Abraham et al. 1988; Lovelock and Rund
1993; Flanders 1990; Morita 2001; Carroll 2003; Frankel 2004] for
books offering a theoretical treatment of various physical theories
using differential forms.

1.3 Differential vs. Discrete Modeling

We have seen that a large amount of our scientific knowledge relies
on a deeply-rooted differential (i.e., smooth) comprehension of the
world. This abstraction of differentiability allows researchers to
model complex physical systems via concise equations. With the
sudden advent of the digital age, it was therefore only natural to
resort to computations based on such differential equations.

However, since digital computers can only manipulate finite sets
of numbers, their capabilities seem to clash with the basic founda-
tions of differential modeling. In order to overcome this hurdle, a
first set of computational techniques (e.g., finite difference or par-
ticle methods) focused on satisfying the continuous equations at a
discrete set of spatial and temporal samples. Unfortunately, focus-
ing on accurately discretizing the local laws often fails to respect
important global structures and invariants. Later methods such as
Finite Elements (FEM), drawing from developments in the calculus
of variations, remedied this inadequacy to some extent by satisfying
local conservation laws on average and preserving some important
invariants. Coupled with a finer ability to deal with arbitrary bound-
aries, FEM became the de facto computational tool for engineers.
Even with significant advances in error control, convergence, and
stability of these finite approximations, the underlying structures of
the simulated continuous systems are often destroyed: a moving
rigid body may gain or loose momentum; or a cavity may exhibit
fictitious eigenmodes in an electromagnetism (E&M) simulation.
Such examples illustrate some of the loss of fidelity that can fol-
low from a standard discretization process, failing to preserve some
fundamental geometric and topological structures of the underlying
continuous models.

The cultural gap between theoretical and applied science commu-
nities may be partially responsible for the current lack of proper
discrete, computational modeling that could mirror and leverage
the rich developments of its differential counterpart. In particu-
lar, it is striking that the calculus of differential forms has not yet
had an impact on the mainstream computational fields, despite ex-
cellent initial results in E&M [Bossavit 1998] or Lagrangian me-
chanics [Marsden and West 2001]. It should also be noticed that
some basic tools necessary for the definition of a discrete calculus
already exist, probably initiated by Poincaré when he defined his
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cell decomposition of smooth manifolds. The study of the structure
of ordered sets or simplices now belongs to the well-studied branch
of mathematics known as Combinatorial Differential Topology and
Geometry, which is still an active area of research (see, e.g., [For-
man ] and [Björner and Welker 1995] and references therein).

1.4 Calculus ex Geometrica

Given the overwhelming geometric nature of the most fundamental
and successful calculus of these last few centuries, it seems relevant
to approach computations from a geometric standpoint.

One of the key insights that percolated down from the theory of
differential forms is rather simple and intuitive: one needs to recog-
nize that different physical quantities have different properties, and
must be treated accordingly. Fluid mechanics or electromagnetism,
for instance, make heavy use of line integrals, as well as surface
and volume integrals; even physical measurements are performed
as specific local integrations or averages (think flux for magnetic
field, or current for electricity, or pressure for atoms’ collisions).
Pointwise evaluations or approximations for such quantities are not
the appropriate discrete analogs, since the defining geometric prop-
erties of their physical meaning cannot be enforced naturally. In-
stead, one should store and manipulate those quantities at their
geometrically-meaningful location: in other words, we should con-
sider values on vertices, edges, faces, and tetrahedra as proper dis-
crete versions of respectively pointwise functions, line integrals,
surface integrals, and volume integrals: only then will we be able to
manipulate those values without violating the symmetries that the
differential modeling tried to exploit for predictive purposes.

1.5 Similar Endeavors

The need for improved numerics have recently sprung a (still lim-
ited) number of interesting related developments in various fields.
Although we will not try to be exhaustive, we wish to point the
reader to a few of the most successful investigations with the same
“flavor” as our discrete geometry-based calculus, albeit their ap-
proaches are rarely similar to ours. First, the field of Mimetic Dis-
cretizations of Continuum Mechanics, led by Shashkov, Steinberg,
and Hyman [Hyman and Shashkov 1997], started on the premise
that spurious solutions obtained from finite element or finite differ-
ence methods often originate from inconsistent discretizations of
the operators div, curl, and grad, and that addressing this incon-
sistency pays off numerically. Similarly, Computational Electro-
magnetism has also identified the issue of field discretization as the
main reason for spurious modes in numerical results. An excel-
lent treatment of the discretization of the Maxwell’s equations re-
sulted [Bossavit 1998], with a clear relationship to the differential
case. Finally, recent developments in Discrete Lagrangian Mechan-
ics have demonstrated the efficacy of a proper discretization of the
Lagrangian of a dynamical system, rather than the discretization of
its derived Euler-Lagrange equations: with a discrete Lagrangian,
one can ensure that the integration scheme satisfies an exact discrete
least-action principle, preserving all the momenta directly for arbi-
trary orders of accuracy [Marsden and West 2001]. Respecting the
defining geometric properties of both the fields and the governing
equations is a common link between all these recent approaches.

1.6 Advantages of Discrete Differential Modeling

The reader will have most probably understood our bias by now:
we believe that the systematic construction, inspired by Exterior
Calculus, of differential, yet readily discretizable computational
foundations is a crucial ingredient for numerical fidelity. Because
many of the standard tools used in differential geometry have dis-
crete combinatorial analogs, the discrete versions of forms or man-

ifolds will be formally identical to (and should partake of the same
properties as) the continuum models. Additionally, such an ap-
proach should clearly maintain the separation of the topological
(metric-independent) and geometrical (metric-dependent) compo-
nents of the quantities involved, keeping the geometric picture (i.e.,
intrinsic structure) intact.

A discrete differential modeling approach to computations will also
be often much simpler to define and develop than its continuous
counterpart. For example, the discrete notion of a differential form
will be implemented simply as values on mesh elements. Likewise,
the discrete notion of orientation will be more straightforward than
its continuous counterpart: while the differential definition of ori-
entation uses the notion of equivalence class of atlases determined
by the sign of the Jacobian, the orientation of a mesh edge will be
one of two directions; a triangle will be oriented clockwise or coun-
terclockwise; a volume will have a direction as a right-handed helix
or a left-handed one; no notion of atlas (a collection of consistent
coordinate charts on a manifold) will be required.

Figure 1: Typical 2D and 3D meshes: although the David’ head appears
smooth, its surface is made of a triangle mesh; tetrahedral meshes (such
as this mechanical part, with a cutaway view) are some typical examples of
irregular meshes on which computations are performed. David’s head mesh
is courtesy of Marc Levoy, Stanford.

1.7 Goal of This Chapter

Given these premises, this chapter was written with several pur-
poses in mind. First, we wish to demonstrate that the foundations
on which powerful methods of computations can be built are quite
approachable—and are not as abstract as the reader may fear: the
ideas involved are very intuitive as a side effect of the simplicity of
the underlying geometric principles.

Second, we wish to help bridge the gap between applied fields and
theoretical fields: we have tried to render the theoretical bases of
our exposition accessible to computer scientists, and the concrete
implementation insights understandable by non-specialists. For this
very reason, the reader should not consider this introductory expo-
sition as a definite source of knowledge: it should instead be con-
sidered as a portal to better, more focused work on related subjects.
We only hope that we will ease our readers into foundational con-
cepts that can be undoubtedly and fruitfully applied to all sorts of
computations—be it for graphics or simulation.

With these goals in mind, we will describe the background needed
to develop a principled, geometry-based approach to computational
modeling that gets around the apparent mismatch between differen-
tial and discrete modeling.

2 Relevance of Forms for Integration
The evaluation of differential quantities on a discrete space (mesh)
is a nontrivial problem. For instance, consider a piecewise-linear
2-dimensional surface embedded in a three-dimensional Euclid-
ean space, i.e., a triangle mesh. Celebrated quantities such as the
Gaussian and mean curvatures are delicate to define on it. More
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precisely, the Gaussian curvature can be easily proven to be zero
everywhere except on vertices, where it is a Dirac delta function.
Likewise, the mean curvature can only be defined in the distribu-
tional sense, as a Dirac delta function on edges. However, through
local integrations, one can easily manipulate these quantities nu-
merically: if a careful choice of non-overlapping regions is made,
the delta functions can be properly integrated, rendering the com-
putations relatively simple as shown, for example, in [Meyer et al.
2002; Hildebrandt and Polthier 2004]. Note that the process of inte-
gration to suppress discontinuity is, in spirit, equivalent to the idea
of weak form used in the Finite Element method.

This idea of integrated value has predated in some cases the equiva-
lent differential statements: for instance, it was long known that the
genus of a surface can be calculated through a cell decomposition
of the surface via the Euler characteristic. The actual Gauss-Bonnet
theorem was, however, derived later on. Now, if one tries to dis-
cretize the Gaussian curvature of a piecewise-linear surface in an
arbitrary way, it is not likely that its integral over the surface equals
the desired Euler characteristic, while its discrete version, defined
on vertices (or, more precisely, on the dual of each vertex), naturally
preserves this topological invariant.

2.1 From Integration to Differential Forms

Integration is obviously a linear operation, since for any disjoint
sets A and B, ∫

A∪B
=

∫

A

+

∫

B

.

Moreover, the integration of a smooth function over a subset of
measure zero is always zero; for example, an area integral of (a
lower dimensional object such as) a curve or a point is equal to zero.
Finally, integration is objective (i.e., relevant) only if its evaluation
is invariant under change of coordinate systems. These three prop-
erties combined directly imply that the integrand (i.e., the whole
expression after the integral sign) has to be antisymmetric. That is,
the basic building blocks of any type of integration are differential
forms. Chances are, the reader is already very well acquainted with
forms, maybe without even knowing it.

2.1.1 An Intuitive Definition

A differential form (also denoted as exterior1 differential form) is,
informally, an integrand, i.e., a quantity that can be integrated. It
is the dx in

∫
dx and the dx dy in

∫∫
dx dy. More precisely,

consider a smooth function F (x) over an interval inR. Now, define
f(x) to be its derivative, that is,

f(x) =
dF

dx
,

Rewriting this last equation (using slightly abusive notations for
simplicity) yields dF = f(x)dx, which leads to:

∫ b

a

dF =

∫ b

a

f(x)dx = F (b)− F (a). (1)

This last equation is known as the Newton-Leibnitz formula, or
the first fundamental theorem of calculus. The integrand f(x)dx
is called a 1-form, because it can only be integrated over any 1-
dimensional (1D) real interval. Similarly, for a functionG(x, y, z),
we have:

dG =
∂G

∂x
dx+

∂G

∂y
dy +

∂G

∂z
dz ,

1The word “exterior” is used as the exterior algebra is basically builds
out of an outer product.

which can be integrated over any 1D curve in R3, and is also a 1-
form. More generally, a k-form can be described as an entity ready
(or designed, if you prefer) to be integrated on a kD (sub)region.
Note that forms are valued zero on (sub)regions that are of higher
or lower order dimension than the original space; for example, 4-
forms are zero on R3. These differential forms are extensively used
in mathematics, physics and engineering, as we already
hinted at the fact in Section 1.4 that most of our mea-
surements of the world are of integral nature: even dig-
ital pictures are made out of local area integrals of the
incident light over each of the sensors of a camera to
provide a set of values at each pixel on the final image
(see inset). The importance of this notion of forms in science is
also evidenced by the fact that operations like gradient, divergence,
and curl can all be expressed in terms of forms only, as well as
fundamental theorems like Green’s or Stokes.

2.1.2 A Formal Definition

For concreteness, consider the n-dimensional Euclidean space Rn,
n ∈ N and letM be an open regionM ⊂ Rn; M is also called
an n-manifold. The vector space TxM consists of all the (tangent)
vectors at a point x ∈ M and can be identified with Rn itself. A
k-form ωk is a rank-k, anti-symmetric, tensor field overM. That
is, at each point x ∈M, it is a multi-linear map that takes k tangent
vectors as input and returns a real number:

ωk : TxM . . .× TxM −→ R

which changes sign when you switch two variables (hence the term
antisymmetric). Any k-form naturally induces a k-form on a sub-
manifold, through restriction of the linear map to the domain that is
the product of tangent spaces of the submanifold.

Comments on the Notion of Pseudo-forms There is a
closely related concept named pseudo-form. Pseudo-forms change
sign when we change the orientation of coordinate systems, just like
pseudo-vectors. As a result, the integration of a pseudo-form does
not change sign when the orientation of the manifold is changed.
Unlike k-forms, a pseudo-k-form induces a pseudo-k-form on a
submanifold only if a transverse direction is given. For example,
fluid flux is sometimes called a pseudo-2-form: indeed, given a
transverse direction, we know how much flux is going through a
piece of surface; it does not depend on the orientation of the sur-
face itself. Vorticity is, however, a true 2-form: given an orientation
of the surface, the integration gives us the circulation around that
surface boundary induced by the surface orientation. It does not
depend on the transverse direction of the surface. But if we have
an orientation of the ambient space, we can always associate trans-
verse direction with internal orientation of the submanifold. Thus,
in our case, we may treat pseudo-forms simply as forms because we
can consistently choose a representative from the equivalence class.

2.2 The Differential Structure

Differential forms are the building blocks of a whole calculus. To
manipulate these basic blocks, Exterior Calculus defines seven op-
erators:

� d: the exterior derivative, that extends the notion of the differ-
ential of a function to differential forms;

� ?: the Hodge star, that transforms k-forms into (n-k)-forms;
� ∧: the wedge product, that extends the notion of exterior prod-

uct to forms;
� ] and [: the sharp and flat operators, that, given a metric, trans-

forms a 1-form into a vector and vice-versa;
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� iX : the interior product with respect to a vector field X (also
called contraction operator), a concept dual to the exterior prod-
uct;

� LX : the Lie derivative with respect to a vector field X , that
extends the notion of directional derivative.

In this chapter, we will restrict our discussions to the first three op-
erators, to provide the most basic tools necessary in computational
modeling.

2.3 A Taste of Exterior Calculus in R3

To give the reader a taste of the relative simplicity of Exterior Cal-
culus, we provide a list of equivalences (in the continuous world!)
between traditional operations and their Exterior Calculus counter-
part in the special case of R3. We will suppose that we have the
usual Euclidean metric. Then, forms are actually quite simple to
conceive:
0-form⇔ scalar field
1-form⇔ vector
2-form⇔ vector
3-form⇔ scalar field

To be clear, we will add a superscript on the forms to indicate their
rank. Then applying forms to vector fields amounts to:

1-form: u1(v)⇔ u · v.
2-form: u2(v, w)⇔ u · (v × w).
3-form: f3(u, v, w)⇔ fu · (v × w).

Furthermore, the usual operations like gradient, curl, divergence
and cross product can all be expressed in terms of the basic exterior
calculus operators. For example:

d0f = ∇f , d1u = ∇× u, d2u = ∇ · u;
∗0f = f, ∗1u = u, ∗2u = u, ∗3f = f ;
∗0d2 ∗1 u1 = ∇·u, ∗1d1 ∗2 u2 = ∇×u, ∗2d0 ∗3 f = ∇f ;
f0 ∧u = fu, u1 ∧ v1 = u× v, u1 ∧ v2 = u2 ∧ v1 = u · v;
ivu

1 = u · v, ivu2 = u× v, ivf3 = fv.
Now that we have established the relevance of differential forms
even in the most basic vector operations, time has come to turn our
attention to make this concept of forms readily usable for computa-
tional purposes.

3 Discrete Differential Forms
Finding a discrete counterpart to the notion of differential forms is
a delicate matter. If one was to represent differential forms using
their coordinate values and approximate the exterior derivative us-
ing finite differences, basic theorems such as Stokes theorem would
not hold numerically. The main objective of this section is there-
fore to present a proper discretization of the forms on what is known
as simplicial complexes. We will show how this discrete geomet-
ric structure, well suited for computational purposes, is designed to
preserve all the fundamental differential properties. For simplicity,
we restrict the discussion to forms on 2D surfaces or 3D regions
embedded in R3, but the construction is applicable to general man-
ifolds in arbitrary spaces. In fact, the only necessary assumption is
that the embedding space must be a vector space, a natural condi-
tion in practice.

3.1 Simplicial Complexes and Discrete Manifolds

For the interested reader, the notions we introduce in this section
are defined formally in much more details (for the general case
of k-dimensional spaces) in references such as [Munkres 1984] or
[Hatcher 2004].

Figure 2: A 1-simplex is a line segment, the convex hull of two points. A
2-simplex is a triangle, i.e., the convex hull of three distinct points. A 3-
simplex is a tetrahedron, as it is the convex hull of four points.

3.1.1 Notion of Simplex

A k-simplex is the generic term to describe the simplest mesh el-
ement of dimension k—hence the name. By way of motivation,
consider a three-dimensional mesh in space. This mesh is made of
a series of adjacent tetrahedra (denoted tets for simplicity through-
out). The vertices of the tets are said to form a 0-simplex. Similarly,
the line segments or edges form a 1-simplex, the triangles or faces
form a 2-simplex, and the tets a 3-simplex. Note that we can define
these simplices in a top-down manner too: faces (2-simplex) can be
thought of as boundaries of tets (3-simplices), edges (1-simplices)
as boundaries of faces, and vertices (0-simplices) as boundaries of
edges.

The definition of a simplex can be made more abstract as a series
of k-tuples (referring to the vertices they are built upon). However,
for the type of applications that we are targeting in this chapter, we
will often not make any distinction between an abstract simplex and
its topological realization (connectivity) or geometrical realization
(positions in space) .

Formally, a k-simplex σk is the non-degenerate convex hull of
k+1 geometrically distinct points v0, . . . vk ∈ Rn with n ≥ k.
In other words, it is the intersection of all convex sets containing
(v0, . . . vk); namely:

σk = {x ∈ Rn|x =
k∑

i=0

αi vi with α
i ≥ 0 and

k∑

i=0

αi = 1}.

The entities v0, . . . vk are called the vertices and k is called the
dimension of the k-simplex., which we will denote as:

σk = {v0v1...vk} .

3.1.2 Orientation of a Simplex

Note that all orderings of the k+1 vertices of a k-simplex can be di-
vided into two equivalent classes, i.e., two orderings differing by an
even permutation. Such a class of ordering is called an orientation.
In the present work, we always assume that local orientations are
given for each simplex; that is, each element of the mesh has been
given a particular orientation. For example, an edge σ1 = {v0v1}
on Figure 2 has an arrow indicating its default orientation. If the op-
posite orientation is needed, we will denote it as {v1v0}, or, equiv-
alently, by −{v0v1}. For more details and examples, the reader is
referred to [Munkres 1984; Hirani 2003].

3.1.3 Boundary of a Simplex

Any (k-1)-simplex spanned by a subset of {v0, . . . vk} is called a
(k-1)-face of σk. That is, a (k-1)-face is simply a (k-1)-simplex
whose k vertices are all from the k+1 vertices of the k-simplex.
The union of the (k-1)-faces is what is called the boundary of the
k-simplex. One should be careful here: because of the default ori-
entation of the simplices, the formal signed sum of the (k-1)-faces
defines the boundary of the k-simplex. Therefore, the boundary
operator takes a k-simplex and gives the sum of all its (k-1)-faces
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Figure 3: The boundary operator ∂ applied to a triangle (a 2-simplex) is
equal to the signed sum of the edges (i.e., the 1-faces of the 2-simplex).

with 1 or −1 as coefficients depending on whether their respective
orientations match or not, see Figure 4.

To remove possible mistakes in orientation, we can define the
boundary operator as follows:

∂{v0v1...vk} =
k∑

j=0

(−1)j{v0, ..., v̂j , ..., vk}, (2)

where v̂j indicates that vj is missing from the sequence, see Fig-
ure 3. Clearly, each k-simplex has k+1 (k-1)-faces. For this state-
ment to be valid even for k = 0, the empty set ∅ is usually defined
as a (−1)-simplex face of every 0-simplex. The reader is invited to
verify this definition on the triangle {v0, v1, v2} in Figure 3:

∂{v0, v1, v2} = {v1, v2} − {v0, v2}+ {v0, v1}

Figure 4: Boundary operator applied to a triangle (left), and a tetrahedron
(right). Orientations of the simplices are indicated with arrows.

3.1.4 Simplicial Complex

A simplicial complex is a collection K of simplices, which satisfies
the following two simple conditions:

� every face of each simplex in K is in K;
� the intersection of any two simplices in K is either empty, or a

entire common face.

Computer graphics makes heavy use of what is called realizations
of simplicial complexes. Loosely speaking, a realization of a sim-
plicial complex is an embedding of this complex into the underlying
space Rn. Triangle meshes in 2D and tet meshes in 3D are exam-
ples of such simplicial complexes (see Figure 1). Notice that polyg-
onal meshes can be easily triangulated, thus can be easily turned
into simplicial complexes. One can also use the notion of cell com-
plex by allowing the elements of K to be non-simplicial; we will
restrict our explanations to the simpler case of simplicial complexes
for simplicity.

3.1.5 Discrete Manifolds

An n-dimensional discrete manifoldM is an n-dimensional sim-
plicial complex that satisfies the following condition: for each

simplex, the union of all the incident n-simplices forms an n-
dimensional ball (i.e., a disk in 2D, a ball in 3D, etc), or half a
ball if the simplex is on the boundary. As a consequence, each (n-
1)-simplex has exactly two adjacent n-simplices—or only one if it
is on a boundary.

Basically, the notion of discrete manifold corresponds to the usual
Computer Graphics acceptation of “manifold mesh”. For example
in 2D, discrete manifolds cannot have isolated edges (also called
sticks or hanging edges) or isolated vertices, and each of their edges
is adjacent to 2 triangles (except for the boundary; in that case, the
edge is adjacent to only one triangle). A surface mesh in 3D cannot
have a “fin”, i.e., a edge with more than two adjacent triangles. To
put it differently, infinitesimally-small, imaginary inhabitants of a
n-dimensional discrete manifolds would consider themselves living
in Rn as any small neighborhood of this manifold is isomorphic to
Rn.

Figure 5: (a) A simplicial complex consisting of all vertices {v0, v1, v2, v3}
and edges {e0, e1, e2, e3, e4}. This simplicial complex is not a discrete
manifold because the neighborhoods of the vertices v1 and v2 (or of any
points along an edge) are not 1D balls. (b) If we add the triangles f0 and
f1 to the simplicial complex, it becomes a 2-manifold with one boundary.

3.2 Notion of Chains

We have already encountered the notion of chain, without mention-
ing it. Recall that the boundary operator takes each k-simplex and
gives the signed sum of all its (k-1)-faces. We say that the boundary
of a k-simplex produces a (k-1)-chain. The following definition is
more precise and general.

3.2.1 Definition

A k-chain of an oriented simplicial complex K is a set of values,
one for each k-simplex of K. That is, a k-chain c can then be
thought of as a linear combination of all the k-simplices in K:

c =
∑

σ∈K

c(σ) · σ, (3)

where c(σ) ∈ R. More formally, a chain forms a free abelian group
generated by the k-simplices, i.e., a mapping from the collection of
all k-simplices in K to R. We will denote the group of all k-chains
as Ck.

3.2.2 Implementation of Chains

Let the set of all k-simplices in K be denoted Kk, and let its car-
dinality be denoted as |Kk|. A k-chain can simply be stored as a
vector (or array) of dimension |Kk|, i.e., one number for each k-
simplex σk ∈ Kk.

3.2.3 Boundary Operator on Chains

We mentioned that the boundary operator ∂ was returning a particu-
lar type of chain, namely, a chain with coefficients equal to either 0,
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1, or −1. Therefore, it should not be surprising that we can extend
the notion of boundary to act also on k-chains, simply by linearity:

∂
∑

k

ckσk =
∑

k

ck∂σk.

That is, from one set of values assigned to all simplices of a com-

Figure 6: (a) An example of 1-chain being the boundary of a face (2-
simplex); (b) a second example of 1-chain with 4 non-zero coefficients.

plex, one can deduce another set of values derived by weighting the
boundaries of each simplex by the original value stored on it. This
operation is very natural, and can thus be implemented easily as
explained next.

3.2.4 Implementation of the Boundary Operator

Since the boundary operator is a linear mapping from the space of
k-simplices to the space of (k-1)-simplices, it can simply be rep-
resented by a matrix of dimension |Kk−1| × |Kk|. The reader can
convince herself that this matrix is sparse, as only immediate neigh-
bors are involved in the boundary operator. Similarly, this matrix
contains only the values 0, 1, and −1. Notice than in 3D, there are
three non-trivial boundary operators ∂k (∂1 is the boundary oper-
ator on edges, ∂2 on triangles, ∂3 on tets). However, the operator
needed for a particular operation is obvious from the type of the
argument: if the boundary of a tet is needed, the operator ∂3 is
the only one that makes sense to apply; in other words, the bound-
ary of a k-simplex σk is found by invoking ∂kσk. Thanks to this
context-dependence, we can simplify the notation and remove the
superscript when there is no ambiguity.

3.3 Notion of Cochains

A k-cochain ω is the dual of a k-chain, that is to say, ω is a linear
mapping that takes k-chains to R. One writes:

ω : Ck → R
c → ω(c), (4)

which reads as: a k-cochain ω operates on a k-chain c to give a
scalar in R. Since a chain is a linear combination of simplices, a
cochain returns a linear combination of the values of that cochain
on each simplex involved.

Clearly, a co-chain also corresponds to one value per simplex (since
all the k-simplices form a basis for the vector space Ck, and we
only need to know the mapping of vectors in this basis to determine
a linear mapping), and hence the notion of duality of chains and
co-chains is appropriate. But contrary to a chain, a k-cochain is
evaluated on each simplex of the dimension k. In other words, a
k-cochain can be thought of as a field that can be evaluated on each
k-simplex of an oriented simplicial complex K.

3.3.1 Implementation of Cochains

The numerical representation of cochains follows from that of
chains by duality. Recall that a k-chain can be represented as a
vector ck of length equal to the number of k-simplices inM. Sim-
ilarly, one may represent ω by a vector ωk of the same size as ck.

Now, remember that ω operates on c to give a scalar in R. The
linear operation ω(c) translates into an inner product ωk · ck. More
specifically, one may continue to think of ck as a column vector so
that the R-valued linear mapping ω can be represented by a row
vector (ωk)t, and ω(c) becomes simply the matrix multiplication
of the row vector (ωk)t with the column vector ck. The evaluation
of a cochain is therefore trivial to implement.

3.4 Discrete Forms as Co-Chains

The attentive reader will have noticed by now: k-cochains are dis-
crete analogs to differential forms. Indeed, a continuous k-form
was defined as a linear mapping from k-dimensional sets to R, as
we can only integrate a k-form on a k-(sub)manifold. Note now
that a kD set, when one has only a mesh to work with, is simply
a chain. And a linear mapping from a chain to a real number is
what we called a cochain: a cochain is therefore a natural discrete
counterpart of a form.

For instance a 0-form can be evaluated at each point, a 1-form can
be evaluated on each curve, a 2-form can be evaluated on each sur-
face, etc. Now if we restrict integration to take place only on the
k-submanifold which is the sum of the k-simplices in the triangu-
lation, we get a k-cochain; thus k-cochains are a discretization of
k-forms. One can further map a continuous k-form to a k-cochain.
To do this, first integrate the k-form on each k-simplex and assign
the resulting value to that simplex to obtain a k-cochain on the k-
simplicial complex. This k-cochain is a discrete representation of
the original k-form.

3.4.1 Evaluation of a Form on a Chain

We can now naturally extend the notion of evaluation of a differen-
tial form ω on an arbitrary chain simply by linearity:

∫
∑
i ciσi

ω =
∑

i

ci

∫

σi

ω. (5)

As mentioned above, the integration of ω on each k-simplex σk
provides a discretization of ω or, in other words, a mapping from
the k-form ω to a k-cochain represented by:

ω[i] =

∫

σi

ω.

However convenient this chain/cochain standpoint is, in practical
applications, one often needs a point-wise value for a k-form or to
evaluate the integration on a particular k-submanifold. How do we
get these values from a k-cochain? We will cover this issue of form
interpolation in Section 6.

4 Operations on Chains and Cochains
4.1 Discrete Exterior Derivative

In the present discrete setting where the discrete differential forms
are defined as cochains, defining a discrete exterior derivative can
be done very elegantly: Stokes’ theorem, mentioned early on in
Section 2, can be used to define the exterior derivative d. Tra-
ditionally, this theorem states a vector identity equivalent to the
well-known curl, divergence, Green’s, and Ostrogradsky’s theo-
rems. Written in terms of forms, the identity becomes quite sim-
ple: it states that d applied to an arbitrary form ω is evaluated on an
arbitrary simplex σ as follows:

∫

σ

dω =

∫

∂σ

ω. (6)
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You surely recognize the usual property that an integral over a k-
dimensional set is turned into a boundary integral (i.e., over a set of
dimension k-1). With this simple equation relating the evaluation
of dω on a simplex σ to the evaluation of ω on the boundary of this
simplex, the exterior derivative is readily defined: each time you
encounter an exterior derivative of a form, replace any evaluation
over a simplex σ by a direct evaluation of the form itself over the
boundary of σ. Obviously, Stokes’ theorem will be enforced by
construction!

4.1.1 Coboundary Operator

The operator d is called the adjoint of the boundary operator ∂: if
we denote the integral sign as a pairing, i.e., with the convention that∫
σ
ω = [ω, σ], then applying d on the left hand side of this operator

is equivalent to applying ∂ on the right hand: [dω, σ] = [ω, ∂σ].
For this very reason, d is sometimes called the coboundary operator.

Finally, by linearity of integration, we can write a more general
expression of Stokes’ theorem, now extended to arbitrary chains as
follows:

∫

∑
i ciσi

dω =

∫

∂

(∑
i ciσi

)
ω =

∫

∑
i ci∂σi

ω =
∑

i

ci

∫

∂σi

ω

Consider the example shown in Figure 7. The discrete exterior
derivative of the 1-form, defined as numbers on edges, is a 2-
form represented by numbers on oriented faces. The orientation
of the 1-forms may be opposite to that induced on the edges by
the orientation of the faces. In this case, the values on the edges
change sign. For instance, the 2-form associated with the d of the
1-forms surrounding the oriented shaded triangle takes the value
ω = 2− 1− 0.75 = 0.25.

Figure 7: Given a 1-form as numbers on oriented edges, its discrete exte-
rior derivative is a 2-form. In particular, this 2-form is valued 0.25 on the
oriented shaded triangle.

4.1.2 Implementation of Exterior Derivative

Since we use vectors of dimension |Kk| to represent a k-cochain,
the operator d can be represented by a matrix of dimension
|Kk+1| × |Kk|. Furthermore, this matrix has a trivial expression.
Indeed, using the matrix notation introduced earlier, we have:

∫

∂c

ω = ωt(∂c) = (ωt∂)c = (∂tω)tc =

∫

c

dω.

Thus, the matrix d is simply equal to ∂t. This should not come as
a surprise, since we previously discussed that d is simply the ad-
joint of ∂. Note that extreme care should be used when boundaries
are present. However, and without digging too much into the de-
tails, it turns out that even for discrete manifolds with boundaries,
the previous statement is valid. Implementing the exterior deriva-
tive while preserving Stokes’ theorem is therefore a trivial matter

in practice. Notice that just like for the boundary operator, there
is actually more than one matrix for the exterior derivative opera-
tor: there is one per simplex dimension. But again, the context is
sufficient to actually know which matrix is needed. A brute force
approach that gets rid of these multiple matrices is to use a notion
of super-chain, i.e., a vector storing all simplices, ordered from di-
mension 0 to the dimension of the space: in this case, the exterior
derivative can be defined as a single, large sparse matrix that con-
tains these previous matrices as blocks along the diagonal. We will
not use this approach, as it makes the exposition less intuitive in
general.

4.2 Exact/Closed Forms and Poincaré Lemma

A k-form ω is called exact if there is a (k-1)-form α such that ω =
dα, and it is called closed if dω = 0.

Figure 8: (a) The 2-form on the oriented shaded triangles defined by the
exterior derivative d of the 1-form on the oriented edges is called an exact 2-
form; (b) The 1-form on the oriented edges whose derivative d is identically
zero is called a closed 1-form.

It is worth noting here that every exact form is closed, as will be
seen in Section 4.3. Moreover, it is well-known in the continuous
setting that a closed form on a smooth contractible (sub)-manifold
is locally exact (to be more accurate: exact over any disc-like re-
gion). This result is called the Poincaré lemma. The discrete ana-
logue to this lemma can be stated as follows: given a closed k-
cochain ω on a star-shaped complex, that is to say, dω = 0, there
exits a (k-1)-cochain α such that ω = dα. For a formal statement
and proof of this discrete version, see [Desbrun et al. 2004].

4.3 Introducing the deRham Complex

The boundary of a boundary is the empty set. That is, the boundary
operator applied twice to a k-simplex is zero. Indeed, it is easy to
verify that ∂ ∂σk = 0, since each (k-2)-simplex will appear exactly
twice in this chain with different signs and, hence, cancel out (try
it at home!). From the linearity of ∂, one can readily conclude that
the property ∂ ∂ = 0 is true for all k-chains since the k-simplices
form a basis. Similarly, one has that the discrete exterior derivative
satisfies d d = ∂t∂t = (∂ ∂)t = 0, analogously to the exterior
derivative of differential forms (notice that this last equality corre-
sponds to the equality of mixed partial derivatives, which in turn is
responsible for identities like∇×∇ = 0 and∇ ·∇× = 0 in R3).

00

Figure 9: The chain complex of a tetrahedron with the boundary operator:
from the tet, to its triangles, to their edges, and to their vertices.

4.3.1 Chain Complex

In general, a chain complex is a sequence of linear spaces, con-
nected with a linear operatorD that satisfies the propertyDD = 0.
Hence, the boundary operator ∂ (resp., the coboundary operator d)
makes the spaces of chains (resp., cochains) into a chain complex,
as shown in Figures 9 and 13.
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When the spaces involved are the spaces of differential forms, and
the operator is the exterior derivative d, this chain complex is called
the deRham complex. By analogy, the chain complex for the spaces
of discrete forms and for the coboundary operator is called the dis-
crete deRham complex (or sometimes, the cochain complex).

4.3.2 Examples

Consider the 2D simplicial complex in Figure 10(a) and choose the
oriented basis of the i-dimensional simplices (i = 0 for vertices,
i = 1 for edges and i = 2 for the face) as suggested by the ordering
in the figure.
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Figure 10: Three examples of simplicial complexes. The first one is not
manifold. The two others are.

One gets ∂(f0) = e0 − e4 − e3, which can be identified with the
vector (1, 0, 0,−1,−1) representing the coefficient in front of each
simplex. By repeating similar calculations for all simplices, one can
readily conclude that the boundary operator ∂ is given by:

∂2 =

(
1
0
0
−1
−1

)

, ∂1 =

(−1 0 0 −1 0
1 −1 0 0 1
0 1 1 0 0
0 0 −1 1 −1
0 0 0 0 0

)

,

That is, the chain complex under the boundary operator ∂ can be
written as:

0 −→ C2
∂2−→ C1

∂1−→ C0 −→ 0

where Ci, i = 0, 1, 2, denote the spaces of i-chains.

Consider now the domain to be the mesh shown in Figure 10(b).
The exterior derivative operator, or the coboundary operator, can be
expressed as:

d0 =

(−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1
0 −1 0 1

)

, d1 =
(
1 0 0 1 1
0 1 1 0 −1

)
.

It is worth noting that, since d is adjoint to ∂ by definition, the
coboundary operator d induces a cochain complex:

0←− C2 d1←− C1 d0←− C0 ←− 0

where Ci, i = 0, 1, 2, denote the spaces of i-cochains.

Finally, suppose the domain is the tetrahedron in Figure 10(c), then
the exterior derivative operators are:

d0=




−1 1 0 0
0 −1 1 0
1 0 −1 0
1 0 0 −1
0 1 0 −1
0 0 −1 1



 , d1=
(
1 1 −1 0 0 0
1 0 0 1 −1 0
0 1 0 0 1 1
0 0 1 1 0 1

)
, d2=

(
−1 1 1 −1

)
.

4.4 Notion of Homology and Cohomology

Homology is a concept dating back to Poincaré that focuses on
studying the topological properties of a space. Loosely speaking,
homology does so by counting the number of holes. In our case,
since we assume that our space is a simplicial complex (i.e., triangu-
lated), we will only deal with simplicial homology, a simpler, more
straightforward type of homology that can be seen as a discrete ver-
sion of the continuous definition (in other words, it is equivalent to

the continuous one if the domain is triangulated). As we are about
to see, the notion of discrete forms is intimately linked with these
topological notions. In fact, we will see that (co)homology is the
study of the relationship between closed and exact (co)chains.

4.4.1 Simplicial Homology

A fundamental problem in topology is that of determining, for two
spaces, whether they are topologically equivalent. That is, we wish
to know if one space can be morphed into the other without having
to puncture it. For instance, a sphere-shaped tet mesh is not topo-
logically equivalent to a torus-shaped tet mesh as one cannot alter
the sphere-shaped mesh (i.e., deform, refine, or coarsen it locally)
to make it look like a torus.

The key idea of homology is to define invariants (i.e., quantities
that cannot change by continuous deformation) that characterize
topological spaces. The simplest invariant is the number of con-
nected components that a simplicial complex has: obviously, two
simplicial complexes with different numbers of pieces cannot be
continuously deformed into each other! Roughly speaking, ho-
mology groups are an extension of this idea to define more sub-
tle invariants than the number of connected components. In gen-
eral, one can say that homology is a way to define the notion of
holes/voids/tunnels/components of an object in any dimension.

Cycles and their Equivalence Classes Generalizing the
previous example to other invariants is elegantly done using the no-
tion of cycles. A cycle is simply a closed k-chain; that is, a linear
combination of k-simplices so that the boundary of this chain (see
Section 3.2) is the empty set. Any set of vertices is a closed chain;
any set of 1D loops are too; etc. Equivalently, a k-cycle is any
k-chain that belongs to Ker ∂k, by definition.

On this set of all k-cycles, one can define equivalence classes. We
will say that a k-cycle is homologous to another k-cycle (i.e., in the
same equivalence class than the other) when these two chains differ
by a boundary of a (k+1)-chain (i.e., by an exact chain). Notice that
this exact chain is, by definition (see Section 4.2), in the image of
∂k+1, i.e., Im ∂k+1. To get a better understanding of this notion
of equivalence class, the reader is invited to look at Figure 11: the
1-chains L1 and L3 are part of the same equivalent class as their
difference is indeed the boundary of a well-defined 2D cycle—a
rubber-band shape in this case. Notice that as a consequence, L1
can be deformed intoL3 without having to tear the loop apart. how-
ever, L2 is not of the class, and thus cannot be deformed into L3;
there’s no 2-cycle that corresponds to their difference.

4.4.2 Homology Groups

Let us now use these definition on the simple case of the 0th ho-
mology groupH0.

Homology Group H0 The boundary of any vertex is ∅. Thus,
any linear combination of vertices is a 0-cycle by definition. Now
if two vertices v0 and v1 are connected by an edge, v1 − v0 (i.e.,
the difference of two cycles) is the boundary of this edge. Thus, by
our previous definition, two vertices linked by an edge are homolo-
gous as their difference is the boundary of this edge. By the same
reasoning, any two vertices taken from the same connected compo-
nent are, also, homologous, since there exists a chain of edges in
between. Consequently, we can pick only one vertex per connected
component to form a basis of this homology group. Its dimension,
β0, is therefore simply the number of connected components. The
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basis elements of that group are called generators, since they gen-
erate the whole homology group.

Homology Group H1 Let us proceed similarly for the 1st ho-
mology class: we now have to consider 1-cycles (linear combina-
tions of 1D loops). Again, one can easily conceive that there are
different types of such cycles, and it is therefore possible to separate
all possible cycles into different equivalence classes. For instance,
the loop L1 in Figure 11 is topologically distinct from the curve
L2: one is around a hole and the other is not, so the difference be-
tween the two is not the boundary of a 2-chain. Conversely, L1 is in
the same class as curve L3 since they differ by one connected area.
Thus, in this figure, the 1st homology group is a 1-dimensional
group, and L1 (or L3, equivalently) is its unique generator. The
reader is invited to apply this simple idea on the triangulated torus,
to find two loops as generators ofH1.

Figure 11: Example of Homology Classes: the cycles L1 and L2 are topo-
logically distinct as one encloses a hole while the other does not; L1 and
L3 are however in the same equivalence class.

Formal Definition of Homology Groups We are now ready
to generalize this construction to all homology groups. Remember
that we have a series of k-chain spaces:

Cn
∂n−→ Cn−1 . . .

∂2−→ C1
∂1−→ C0

with the property that ∂ ∂ is the empty set. This direct implies
that image of Cj is always in the kernel of ∂j+1—such a series is
called a chain complex. Now, the homology groups {Hk}k=0..n of
a chain complex based on ∂ are defined as the following quotient
spaces:

Hk = Ker ∂k/Im ∂k+1.
The reader is invited to check that this definition is exactly what we
did for the 0th and 1st homology groups—and it is now valid for
any order: indeed, we use the fact that closed chains (belonging to
Ker ∂) are homologous iff their difference is in Im ∂, and this is
exactly what this quotient vector space is.

Example Consider the example in Figure 10(a). Geometrically,
H0 is nontrivial because the simplicial complex σ is disconnected
(it is easy to see {v0, v4} form a basis forH0), whileH1 is nontriv-
ial since the cycle (e1−e2+e4) is not the boundary of any 2-chain
of σ ({(e1 − e2 + e4)} is indeed a basis for this 1D spaceH1).

Link to Betti Numbers The dimension of the k-th cohomology
group is called k-th Betti number; βk = dimHk. For a 3D simpli-
cial complex embedded in R3, these numbers have very straightfor-
ward meanings. β0 is the number of connected components, β1 is
the number of tunnels, β2 is the number of voids, while β3 is the
number of 4D holes, which is 0 in the Euclidean (flat 3D) case. Fi-
nally, note that

∑
k=0..n(−1)

kβk, where βk is the k-th Betti num-
ber, gives us the well-known Euler characteristics.

4.4.3 Cohomology Groups

The definition of homology groups is much more general than what
we just reviewed. In fact, the reader can take the formal definition

in the previous section, replace all occurrences of chain by cochain,
of ∂ by d, and reverse the direction of the operator between spaces
(see Section 4.3.2): this will also define equivalence classes. Be-
cause cochains are dual of chains, and d is the adjoint of ∂, these
equivalence classes define what are actually denoted as cohomol-
ogy groups: the cohomology groups of the deRham complex for the
coboundary operator are simply the quotient spaces Ker d/Im d.
Finally, note that the homology and cohomology groups are not
only dual notions, but they are also isomorphic; therefore, the car-
dinalities of their basis are equal.

4.4.4 Calculation of the Cohomology Basis

One usual way to calculate a cohomology basis is to calculate a
Smith Normal Form to obtain the homology basis first (possibly
using progressive mesh [Gu and Yau 2003]), with a worst case com-
plexity is O(n3), and then find the corresponding cohomology ba-
sis derived from this homology basis. We provide an alternative
method here with worst case complexity also equal to O(n3). The
advantage of our method is that it directly calculates the cohomol-
ogy basis.

Our algorithm is a modified version of an algorithm in [Edelsbrun-
ner et al. 2000], although they did not use it for the same purpose2.
We will use row#(.) to refer to the row number of the last non-zero
coefficient in a particular column.

The procedure is as follows:

1. Transform dk (size |Kk+1| × |Kk|) in the following manner:

// For each column of dk

for(i = 0; i < |σk|; i++)
// Reduce column i
repeat
p← row#(dk[i])
find j < i such as p==row#(dk[j])
make dk[i][p] zero by adding to dk[i] a multiple of dk[j]

until j not found or column i is all zeros

In the end of this procedure, we getDk = dk Nk, whose non-
zero column vectors are linearly independent of each other
and with different row#(.), and Nk is a non-singular upper
triangular matrix.

2. Construct Kk = {Nki | Dki = 0} (where Nki and Dki are
column vectors of matrices Nk andDk respectively).
Kk is a basis for kernel of dk.

3. Construct Ik = {Nki |∃j such that i = row#(D(k−1)j )}

4. Construct P k = Kk − Ik
P k is a basis for cohomology basis.

Short proof of correctness: First thing to notice is thatNki ’s are all
linearly independent because Nk is nonsingular. For any non-zero
linear combination of vectors in P k , row#(.) of it (say i) equals
to the max of row#(.) of vectors with non-zero coefficients. But
i is not row#(.) of any D(k−1)i (and thus any linear combination
of them) by definition of P k. Therefore, we know that the linear
combination is not in the image space of dk−1 (since the range of
dk−1 is the same as Dk−1, by construction). Thus, P k spans a
subspace of Ker(dk)/Im(dk−1) of dimension Card(P k).

One can also prove that Ik is a subset ofKk. Pick such anNki with
i = row#(D

(k−1)
j ). We have: dk D(k−1)j = 0 (since dk ◦dk−1 =

0). Now row#(τ ≡ (Nk)−1 d(k−1)j) = i (the inverse of an up-
per triangular matrix is also an upper triangular matrix). So conse-

2Thanks to David Cohen-Steiner for pointing us to the similarities
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quently, 0 = dk d(k−1)j = Dk(Nk)−1 d(k−1)j = Dkτ means
that Dki = 0 because the columns of Dk are linearly indepen-
dent or 0. Therefore, Card(P k) = Card(Kk) − Card(Ik) =
Dim(Ker(dk)) − Dim(Im(d(k−1))), and we conclude that, P k

spans Ker(dk)/Im(dk−1) as expected.

4.4.5 Example

Consider the 2D simplicial complex in Figure 10(a) again. We will
show an example of running the same procedure described above
to compute homology basis. The only difference with the previ-
ous algorithm is that we use ∂ instead of d, since we compute the
homology basis instead of the cohomology basis.

1. Compute the DK = ∂kNk’s and Nk’s: D2 is trivial, as it is
the same as ∂2.

D1 =

(−1 0 0 0 0
1 −1 0 0 0
0 1 1 0 0
0 0 −1 0 0
0 0 0 0 0

)

, N1 =

(
1 0 0 −1 0
0 1 0 −1 −1
0 0 1 1 −1
0 0 0 1 0
0 0 0 0 1

)

,

2. Contruct theK’s:

K0 = {

(
1
0
0
0
0

)

,

(
0
1
0
0
0

)

,

(
0
0
1
0
0

)

,

(
0
0
0
1
0

)

,

(
0
0
0
0
1

)

}

= {v0, v1, v2, v3, v4}

(N0 is the identity)

K1 = {

(−1
−1
1
1
0

)

,

(
0
1
−1
0
1

)

, } = {(−e0−e1+e2+e3), (e1−e2+e4)}

3. Construct the I’s:

I0 = {v1 (1 = row#(D10)),
v2 (2 = row#(D

1
1),

v3 (3 = row#(D
1
2))}

I1 = {(e1 − e2 + e4) (4 = row#(D20)}

4. Consequently, the homology basis is:

P 0 = {v0, v1, v2, v3, v4} − {v1, v2, v3} = {v0, v4}

P 1 = {(−e0 − e1 + e2 + e3)}

This result confirms the basis we gave in the example of Sec-
tion 4.4.2 (Note that −(−e0 − e1 + e2 + e3)− (e1 − e2 + e4) =
e0 − e4 − e3 = ∂f0, thus (−e0 − e1 + e2 + e3) spans the same
homology space as (e1 − e2 + e4)).

4.5 Dual Mesh and its Exterior Derivative

Let us introduce the notion of dual mesh of triangulated manifolds,
as we will see that it is one of the key components of our discrete
calculus. The main idea is to associate to each primal k-simplex a
dual (n-k)-cell. For example, consider the tetrahedral mesh in Fig-
ure 13, we associate a dual 3-cell to each primal vertex (0-simplex),
a dual polygon (2-cell) to each primal edge (1-simplex), a dual edge
(1-cell) to each primal face (2-simplex), and a dual vertex (0-cell)
to the primal tet (3-simplex). By construction, the number of dual
(n-k)-cells is equal to that of primal k-simplices. The collection of
dual cells is called a cell complex, which need not be a simplicial
complex in general.

Yet, this dual complex inherits several properties and operations
from the primal simplicial complex. Most important is the notion
of incidence. For instance, if two primal edges are on a same primal
face, then the corresponding dual faces are incident, that is, they
share a common dual edge (which is the dual of the primal common
face). As a result of this incidence property, one may easily derive
a boundary operator on the dual cell complex and, consequently, a
discrete exterior derivative! The reader is invited to verify that this
exterior derivative on the dual mesh can be simply written as the
opposite of a primal one transposed:

dn−kDual = (−1)
k(dk−1Primal)

t. (7)

The added negative sign appears as the orientation on the dual is
induced from the primal orientation, and must therefore be properly
accounted for. Once again, an implementation can overload the
definition of this operator d when used on dual forms using this
previous equation. In the remainder of our chapter, we will be using
d as a contextual operator to keep the notations a simple as possible.
Because we have defined a proper exterior derivative on the dual
mesh (still satisfying d ◦ d = 0), this dual cell complex also carries
the structure of a chain complex. The structure on the dual complex
may be linked to that of the primal complex using the Hodge star (a
metric-dependent operator), as we will discuss in Section 5.

Figure 12: A 2-dimensional example of primal and dual mesh elements.
On the top row, we see the primal mesh (a triangle) with a representative
of each simplicial complex being highlighted. The bottom row shows the
corresponding circumcentric dual cells (restricted to the triangle).

4.5.1 Dualization: The ∗ Operator

For simplicity, we use the circumcentric (or Voronoi) duality to con-
struct the dual cell complex. The circumcenter of a k-simplex is
defined as the center of the k-circumsphere, which is the unique k-
sphere that has all k + 1 vertices of the k-simplex on its surface.
In Figure 12, we show examples of circumcentric dual cells of a
2D mesh. The dual 0-cell associated with the triangular face is the
circumcenter of the triangle. The dual 1-cell associated with one of
the primal edges is the line segment that joins the circumcenter of
the triangle to the circumcenter of that edge, while the dual 2-cell
associated with a primal vertex is corner wedge made of the con-
vex hull of the circumcenter of the triangle, the two centers of the
adjacent edges, and the vertex itself (see Figure 12, bottom left).
Thereafter, we will denote as ∗ the operation of duality; that is, a
primal simplex σ will have its dual called ∗σ with the orientation
induced by the primal orientation and the manifold’s orientation.
For a formal definition, we refer the reader to [Hirani 2003] for in-
stance. It is also worth noting that other notions of duality such
as the barycentric duality may be employed. For further details on
dual cell (or “block”) decompositions , see [Munkres 1984].

4.5.2 Wedge Product

In the continuous setting, the wedge product ∧ is an operation used
to construct higher degree forms from lower degree ones; it is the
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antisymmetric part of the tensor product. For example, let α and
β be 1-forms on a subset R ⊂ R3, their wedge product α ∧ β is
a 2-form on R. In this case, one can relate the wedge product to
the cross product of vector fields onR. Indeed, if one considers the
vector representations of α and β, the vector proxy to α ∧ β is the
cross product of the two vectors. Similarly, the wedge product of a
1-form γ with the 2-form ω = α ∧ β is a 3-form µ = α ∧ ω (also
called volume-form) on R which is analogous to the scalar triple
product of three vectors.

A discrete treatment of the wedge operator can be found in [Hirani
2003]. In this work, we only need to introduce the notion of a dis-
crete primal-dual wedge product: given a primal k-cochain γ and a
dual (n-k)-cochain ω, the discrete wedge product γ∧ω is an n-form
(or a volume-form). For instance, in the example
depicted in the inset, the wedge product of the primal
1-cochain with the dual 1-cochain is a 2-form associated
with the diamond region defined by the convex hull
of the union between the primal and dual edge (see
inset).

5 Metric-Dependent Operators on Forms
Notice that up to now, we did not assume that a metric was avail-
able, i.e., we never required anything to be measured. However,
such a metric is necessary for many purposes. For instance, sim-
ulating the behavior of objects around us requires measurements
of various parameters in order to be able to model laws of motion,
and compare the numerical results of simulations. Consequently, a
certain number of operations on forms can only be defined once a
metric is know, as we shall see in this section.

5.1 Notion of Metric and Inner Product

A metric is, roughly speaking, a nonnegative function that describes
the “distance” between neighboring points of a given space. For ex-
ample, the Euclidean metric assigns to any two points in the Euclid-
ean space R3, say X = (x1, x2, x3) and Y = (y1, y2, y3), the
number:

d(X,Y)=‖X−Y‖2=
√
(x1−y1)2 + (x2−y2)2 + (x3−y3)2

defining the “standard” distance between any two points in R3 .
This metric then allows one to measure length, area, and volume.
The Euclidean metric can be expressed as the following quadratic
form:

gEuclid =




1 0 0
0 1 0
0 0 1



.

Indeed, the reader can readily verify that this matrix g satisfies:
d2(X,Y) = (X − Y)tg(X − Y). Notice also that this metric
induces an inner product of vectors. Indeed, for two vectors u and
v, we can use the matrix g to define:

u · v = utg v.

Once again, the reader is invited to verify that this equality does
correspond to the traditional dot product when g is the Euclid-
ean metric. Notice that on a non-flat manifold, subtraction of
two points is only possible for points infinitesimally close to each
other, thus the metric is actually defined pointwise for the tangent
space at each point: it does not have to be constant. Finally, no-
tice that a volume form can be induced from a metric by defining
µn =

√
det(g)dx1 ∧ . . . ∧ dxn.

5.2 Discrete Metric

In the discrete setting presented in this paper, we only need to mea-
sure length, area, volume of the simplices and dual cells. We there-
fore do not have a full-blown notion of a metric, only a discrete
metric. Obviously, if one were to use a finer mesh, more informa-
tion on the metric would be available: having more values of length,
area, and volume in a neighborhood provides a better approxima-
tion of the real, continuous metric.

5.3 The Differential Hodge Star

Let us go back for a minute to the differential case to explain a new
concept. Recall that the metric defines an inner product for vectors.
This notion also extends to forms: given a metric, one can define
the product of two k-forms ∈ Ωk(M) which will measure, in a
way, the projection of one onto the other. A formal definition can
be found in [Abraham et al. 1988]. Given this inner product denoted
〈 , 〉, we can introduce an operator ?, called the Hodge star, that
maps a k-form to a complementary (n-k)-form:

? : Ωk(M)→ Ωn−k(M),

and is defined to satisfy the following equality:

α ∧ ?β = 〈α, β〉 µn

for any pair of k-forms α and β (recall that µn is the volume form
induced by the metric g). However, notice that the wedge product
is very special here: it is the product of k-form and a (n-k)-form,
two complementary forms. This fact will drastically simplify the
discrete counterpart of the Hodge star, as we now cover.

d d d

0-forms (vertices) 1-forms (edges) 2-forms (faces) 3-forms (tets)

d d d

Figure 13: On the first line, the ‘primal’ chain complex is depicted and on
the second line we see the dual chain complex (i.e., cells, faces, edges and
vertices of the Voronoi cells of each vertex of the primal mesh).

5.4 Discrete Hodge Star

In the discrete setting, the Hodge star becomes easier: we only
need to define how to go from a primal k-cochain to a dual (n-k)-
cochain, and vice-versa. By definition of the dual mesh, k-chains
and dual (n-k)-chains are represented by vectors of the same di-
mension. Similarly to the discrete exterior derivative (coboundary)
operator, we may use a matrix (this time of size |Kk| × |Kk|) to
represent the Hodge star. Now the question is: what should the
coefficients of this matrix be?

For numerical purposes we want it to be symmetric, positive def-
inite, and sometimes, even diagonal for faster computations. One
such diagonal Hodge star can be defined with the diagonal elements
as the ratio of sizes of a k-simplex and its dual (n-k)-simplex. In
other words, we can define the discrete Hodge star through the fol-
lowing simple rule:

1

|σk|

∫

σk
ω =

1

| ∗ σk|

∫

∗σk
?ω (8)
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Therefore, any primal value of a k-form can be easily transferred
to the dual mesh through proper scaling—and vice-versa; to be pre-
cise, we have:

?k?n−k = (−1)k(n−k)Id, (9)

which means that ? on the dual mesh is the inverse of the ? on the
primal up to a sign (the result of antisymmetry of wedge product,
which happens to be positive for any k-form when n = 3).

So we must use the inverse of the Hodge star to go from a dual (n-
k)-cochain to a k-cochain. We will, however, use indistinguishably
? to mean either the star or its inverse, as there is no ambiguity once
we know whether the operator is applied to a primal or a dual form:
this is also a context-dependent operator.

Implementation Based on Eq. (8), the inner product of forms
αk and βk at the diamond-shaped region formed by each k-simplex
and its dual (n − k)-simplex is simply the product of the value of
α at that k-simplex and value of ?β at that dual (n − k)-simplex.
Therefore, the sum over the whole space gives the following in-
ner product (which involves only linear algebra matrix and vector
multiplications)

〈αk, βk〉 = αt ? β. (10)

where the Hodge star matrix has, as its only non-zero coefficients,
the following diagonal terms:

(?k)qq = |(∗σ)q|/|(σq)|.

Notice that this definition of the inner product, when α = β, in-
duces the definition of the norm of k-forms.

Again, there are three different Hodge stars in R3, one for each
simplex dimension. But as we discussed for all the other operators,
the dimension of the form on which this operator is applied disam-
biguates which star is meant. So we will not encumber our notation
with unnecessary indices, and will only use the symbol ? for any of
the three stars implied.

The development of an accurate, yet fast to compute, Hodge star
is still an active research topic. However, this topic is beyond the
scope of the current paper chapter and will be addressed in a future
publication.

5.5 Discrete Codifferential Operator δ

We already have a linear operator dwhich maps a k-form to a k+1-
form, but we do not have a linear operator which maps a k-form to
a (k− 1)-form. Having defined a discrete Hodge star, one can now
create such an adjoint operator δ for the discrete exterior derivative
d. Here, adjoint is meant with respect to the inner product of forms;
that is, this operator δ satisfies:

〈dα, β〉 = 〈α, δβ〉 ∀α ∈ Ωk−1(M), β ∈ Ωk(M)

For a smooth, compact manifold without boundary, one can prove
that (−1)n(k−1)+1?d? satisfies the above condition [Abraham et al.
1988]. Let us try to use the same definition in the discrete setting;
i.e., we wish to define the discrete δ applied to k-forms by the rela-
tion:

δ ≡ (−1)n(k−1)+1 ? d?, (11)

Beware that we use the notation d to mean the context-depedent
exterior derivative. If you apply δ to a primal k-form, then the
exterior derivative will be applied to a dual (n− k)-form, and thus,
Equation 7 should be used. Once this is well understood, it is quite

straightforward to verify that the following series of equalities:

〈dα, β〉 Eq. (10)
= (dα)t ? β = αtdt ? β

Eq. (9) w/ k↔k−1
= αt(−1)(k−1)(n−(k−1)) ? ?dt ? β
= αt(−1)n(k−1)+1 ? ?(−1)kdt ? β

Eq. (11)
= 〈α, δβ〉

holds on our discrete manifold. So indeed, the discrete d and δ are
also adjoint, in a similar fashion in the discrete setting as they were
in the continuous sense. For this reason, δ is called the codifferen-
tial operator.

Implementation of the Codifferential Operator Thanks to
this easily-proven adjointness, the implementation of the discrete
codifferential operator is a trivial matter: it is simply the product of
three matrices, mimicking exactly the differential definition men-
tioned in Eq. (11).

5.6 Exercise: Laplacian Operator

At this point, the reader is invited to perform a little exercise. Let us
first state that the Laplacian∆ of a form is defined as: ∆ = δd+dδ.
Now, applied to a 0-form, notice that the latter term disappears.
Question: in 2D, what is the Laplacian of a function f at a vertex
i? The answer is actually known: it is the now famous cotangent
formula [Pinkall and Polthier 1993], since the ratio of primal and
dual edge sizes leads to such a trigonometric equality.

6 Interpolation of Discrete Forms
In Section 3.4, we argued that k-cochains are discretizations of k-
forms. This representation of discrete forms on chains, although
very convenient in many applications, is not sufficient to fulfill cer-
tain demands such as obtaining a point-wise value of the k-form.
As a remedy, one can use an interpolation of these chains to the rest
of space. For simplicity, these interpolation functions can be taken
to be linear (by linear, we mean with respect to the coordinates of
the vertices).

6.1 Interpolating 0-forms

It is quite obvious to linearly interpolate discrete 0-forms (as 0-
cochains) to the whole space: we can use the usual vertex-based
linear interpolation basis, often referred to as the hat function in the
Finite Element literature. This basis function will be denoted as ϕi
for each vertex vi. By definition, ϕi satisfies:

ϕi = 1 at vi, ϕi = 0 at vj 6= vi

while ϕi linearly goes to zero in the one-ring neighborhood of vi.
The reader may be aware that these functions are, within each sim-
plex, barycentric coordinates, introduced by Möbius in 1827 as
mass points to define a coordinate-free geometry.

With these basis functions, one can easily check that if we denote a
vertex vj by σj , we have:

∫

vj

ϕvi =

∫

σj

ϕσi =

∫

σj

ϕi=

{
1 if i = j,
0 if i 6= j.

Therefore, these interpolating functions represent a basis of 0-
cochains, that exactly corresponds to the dual of the natural basis of
0-chains.
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6.2 Interpolating 1-forms

We would like to be able to extend the previous interpolation tech-
nique to 1-forms now. Fortunately, there is an existing method to
do just that: the Whitney 1-form (used first in [Whitney 1957]) as-
sociated with an edge σij between vi and vj is defined as:

ϕσij = ϕidϕj − ϕjdϕi.

A direct computation can verify that:

∫

σkl

ϕσij =






1 if i = k and j = l,
−1 if i = l and j = k,
0 otherwise.

Indeed, it is easy to see that the integral is 0 when we are not inte-
grating it on edge eij , because at least one of the vertex (say, i) is
not on the edge, thus, ϕi = 0 and dϕi = 0 on the edge. However,
along the edge σij , we have ϕi + ϕj = 1, therefore:

∫

σij

ϕσij =

ϕi=0∫

ϕi=1

(ϕid(1−ϕi)−(1−ϕi)dϕi) =
ϕi=0∫

ϕi=1

(−dϕi) = 1.

We thus have defined a correct basis for 1-cochains.

6.3 Interpolating with Whitney k-Forms

One can extend these 1-form basis functions to arbitrary k-
simplices. In fact, Whitney k-forms are defined similarly:

ϕσi0,i1,...,ik = k!
∑

j=0...k

(−1)jϕijdϕi0 ∧ ... ∧ d̂ϕij ... ∧ dϕik

where d̂ϕip means that dϕip is excluded from the product. No-
tice how this definition exactly matches the case of vertex and edge
bases, and extends easily to higher dimensional simplices.

Remark If a metric is defined (for instance, the Euclidean met-
ric), we can simply identify dϕ with ∇ϕ for the real calculation.
This corresponds to the notion of sharp (]), but we will not develop
this point other than for pointing out the following remark: the tra-
ditional gradient of a linear function f in 2D, known to be constant
per triangle, can indeed be re-written à la Whitney:

∇f =
∑

i

fi∇ϕi
ϕi+ϕj+ϕk=1

=
∑

i,j,i6=j

(fi−fj)(ϕi∇ϕj−ϕj∇ϕi).

The values (fi−fj) are the edge values associated with the gradient,
i.e., the values of the one-form df .

Figure 14: ∇ϕ for the vertex on top

Basis of Forms The integration of the Whitney form ϕσk as-
sociated with the k-simplex σk will be 1 on that particular simplex,
and 0 on all others. Indeed, it is a simple exercise to see that the
integration of ϕσk is 0 on a different k-simplex, because there is

at least one vertex of this simplex vj that does not belong to σk,
so its hat function ϕj is valued 0 everywhere on σk. Since ϕj or
dϕj appears in every term, the integral of ϕσk is 0. To see that
the integral is 1 on the simplex itself, we can use Stokes’ theorem
(as our discrete forms satisfy it exactly on simplices): first, suppose
k < n, and pick a k + 1-simplex, such that the k-simplex σk is a
face of it. Since it is 0 on other faces, the integral of the Whitney
form is equal to the integral of dϕσk = (k + 1)!dϕi0 ∧ ... ∧ ϕik
on the k + 1-simplex, if we use ϕij as a local reference frame for
the integration,

∫
σk+1

dϕi0 ∧ ... ∧ ϕik is simply the volume of a
standard simplex, which is 1

(k+1)!
, thus the integral is 1. The case

when k = n is essentially the same as k = n− 1.
This means that these Whitney forms are forming a basis of their
respective form spaces. In a way, these bases are an extension of
the Finite Element bases defined on nodes, or of the Finite Volume
elements that are constant per tet.

Note finally that the Whitney forms are not continuous; however,
they are continuous along the direction of the k-simplex (i.e., tan-
gential continuity for 1-forms, and normal continuity for 2-forms);
this is the only condition needed to make the integration well de-
fined. In a way, this property is the least we can ask them to be. We
would lose generality if we were to add any other condition! The
interested reader is referred to [Bossavit 1998] for a more thorough
discussion on these Whitney bases and their relations to the notion
of weak form used in the Finite Element Method.

7 Application to Hodge Decomposition
We now go through a first application of the discrete exterior calcu-
lus we have defined up to now. As we will see, the discrete case is
often much simpler that its continuous counterpart; yet it captures
the same properties.

7.1 Introducing the Hodge Decomposition

It is convenient in some applications to use the Helmholtz-Hodge
decomposition theorem to decompose a given continuous vector
field or differential form (defined on a smooth manifold M) into
components that are mutually orthogonal (in L2 sense), and easier
to compute (see [Abraham et al. 1988] for details). In fluid mechan-
ics for example, the velocity field is generally decomposed into a
part that is the gradient of a potential function and a part that is
the curl of a stream vector potential (see Section 8.3 for further de-
tails), as the latter one is the incompressible part of the flow. When
applied to k-forms, this decomposition is known as the Hodge de-
composition for forms and can be stated as follows:

Given a manifoldM and a k-form ωk onM with appropriate
boundary conditions, ωk can be decomposed into the sum of
the exterior derivative of a (k-1)-form αk−1, the codifferential
of a (k+1)-form βk+1, and a harmonic k-form hk:

ωk = dαk−1 + δβk+1 + hk.

Here, we use the term harmonic to mean that hk satisfies the equa-
tion ∆hk = 0, where ∆ is the Laplacian operator defined as
∆ = dδ + δd. The proof of this theorem is mathematically in-
volved and requires the use of elliptic operator theory and similar
tools, as well as a careful study of the boundary conditions to en-
sure uniqueness. The discrete analog that we propose has a very
simple and straightforward proof as shown below.
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7.2 Discrete Hodge Decomposition

In the discrete setting, the discrete operators such as the exterior
derivative and the codifferential can be expressed using matrix rep-
resentation. This allows one to easily manipulate these operators
using tools from linear algebra. In particular, the discrete version
of the Hodge decomposition theorem becomes a simple exercise in
linear algebra. Note that we will assume a boundaryless domain for
simplicity (the generalization to domains with boundary is concep-
tually as simple).

Theorem 7.1 Let K be a discrete manifold and let Ωk(K) be
the space of discrete Whitney k-forms on K. Consider the lin-
ear operator dk : W k → W k+1, such that dk+1 ◦ dk = 0,
and a discrete Hodge star which is represented as a symmet-
ric, positive definite matrix. Furthermore, define the codiffer-
ential (the adjoint of the operator d) as done in Section 5.5;
namely, let δk+1 = (−1)n(k−1)+1(?k)−1(dk)t?k+1. In this
case, the following orthogonal decomposition holds for all k:

Ωk(K) = dΩk−1(K)⊕ δΩk+1(K)⊕Hk(K)

where ⊕ means orthogonal sum, and Hk(K) is the space of
harmonic k-forms on K, that is,Hk(K) = {h | ∆kh = 0}.

Proof For notational convenience, we will omit the superscript of
the operators when the rank is obvious. We first prove that the three
component spaces are orthogonal. Clearly, using the facts that the
Laplacian operator∆ is equal to dδ+δd and that d and δ are adjoint
operators, one has that ∀h ∈ Hk:

〈∆h, h〉 = 0 ⇒ 〈dδh, h〉+ 〈δdh, h〉=〈dh, dh〉+ 〈δh, δh〉=0
⇒ dh = 0 and δh = 0

Also, ∀α and β ∈ Ωk(K), one has:

〈dα, δβ〉 = 〈ddα, β〉 = 0

and

〈dα, h〉 = 〈α, δh〉 = 0 〈h, δβ〉 = 〈dh, β〉 = 0

Now, any k-form that is perpendicular to dΩk−1(K) and
δΩk+1(K) must be in Hk(K), because this means dh = 0 and
δh = 0, so∆h = dδh+ δdh = 0.

Alternatively, we can prove that:

Ωk(K) = ∆Ωk(K)⊕Hk(K).

By analogy to the previous argument, it is easy to show that∆Ωk is
orthogonal toHk. Additionally, the dimension of these two spaces
sum up to the dimension of Ωk, which means the decomposition is
complete.

Note that the reader can find a similar proof given in Appendix B
of [Frankel 2004], where it is used for Kirchhoff’s Circuit Laws.
There, Frankel does not mention that we can actually use cochains
as the discretization of forms, and his operations using a “metric”
of cochains can be interpreted as a Hodge star.

Implementation of the Discrete Hodge Decomposition
Before we discuss how to numerically implement the discrete
Hodge decomposition, we prove a useful result (that has a continu-
ous analog).

Lemma 7.2 In the discrete setting, one can find exactly one har-
monic cochain from each cohomology equivalence class.

Proof It is can be readily shown that the bases of harmonic
cochains and the cohomology groups both have the dimension
equal to dim(Ker dk)− dim(Im dk−1). To this end, recall that a
cohomology basis is defined as is Ker(dk)/Im(dk−1) and has di-
mension dim(Ker dk)−dim(Im dk−1). Now, in order to see that
the space of harmonic cochains has this same dimension, simply
note that: Ker(dk) = dΩk−1 ⊕Hk.

Now, the equation δ(ω + df) = 0 has a solution for each ω in one
cohomology equivalence class. We know that the cochains forming
different cohomology groups are linearly independent, hence, we
conclude that these harmonic cochains spanHk.

By virtue of the above lemma, the implementation of the Hodge
decomposition is simply recursive in the rank of the form (i.e.,
cochain). The case of 0-forms is trivial: fix one vertex to a con-
stant, and solve the Poisson equation for 0-forms. Now suppose
that we have a decomposition working for (k − 1)-forms, and we
look for the decomposition of k-forms. Our approach is to get the
harmonic component hk first, so that we only need to solve a Pois-
son equation for the rest:

∆ωk = fk − hk (12)

One is left with the problem of finding a basis of harmonic forms.
Since we are given a Hodge star operator, we will use it to define
the metric on the space of cochains. This metric allows us to define
a basis for harmonic k-form (the dimension of this harmonic space
is generally small, since it is the k-th Betti number βk). First, one
needs to calculate the cohomology basis {Pi} based on the algo-
rithm in Section 4.4.4. Once we have {Pi}, we solve one special
decomposition of (k-1)-forms by first computing the forms fi sat-
isfying:

∆fi = −δPi (13)

Now Hk = Pi + dfi gives us the forms in basis for harmonic k-
form space. After normalization, we have the basis to calculate the
projection hk = HHtfk, where we assemble allHk into a matrix
H . This completes the procedure of calculating the decomposition.

A non-singular matrix is often preferable when it comes to solve
a linear system efficiently; we can change the Laplacian matrix
slightly to make the Poisson equation satisfy this requirement. First,
we can get an orthonormal basis for harmonic form space (the di-
mension is βk). Now for basis ej (column vector with j-th element
equal to 1, and 0 everywhere else), take the distance of ej to the har-
monic space |ej−HHtej |; notice that this can be done in constant
time. Now take out the j-th column and j-th row of∆ if ej has the
smallest distance from harmonic space, and repeat the step for βk

times. We are left with a non-singular matrix, and the solution to
the new linear system is a solution to the original Poisson equation.

8 Others Applications
8.1 Form-based Proof of Tutte’s Theorem

The notion of forms as convenient, intrinsic substitutes for vector
fields has been used to provide a concise proof of the celebrated
Tutte’s Embedding Theorem. This important result in graph theory
states that if one fixes the boundary of a 3-connected graph (i.e., a
typical polygonal mesh) to a convex domain in the plane and en-
sures that every non-boundary vertex is a strict convex combination
of its neighbors, then one obtains a planar straight-line embedding
of the graph. In other words, this embedding procedure will not
result in fold-overs. A significantly shorter alternative to the orig-
inal proof of this theorem was proposed by Gortler, Gotsman, and
Thurston [Gortler et al. 2006], using discrete 1-forms on edges. We
now present a sketch of their approach, using a formulation more in
line with the terms we used in this paper.
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A Tutte embedding assigns to each vertex vi of a graph G some
2D coordinates X(vi) = (x(vi), y(vi)). By definition, each inte-
rior vertex vi satisfies a linear condition on its coordinates of the
form: X(vi) =

∑
vj∈N (i) wijX(vj), where N (i) is the set of

1-ring neighbors of vertex vi. These coefficients wij are all non-
negative due to the condition of strict convex combination men-
tioned above. Now, for a given Tutte embedding, one can construct
a 0-form z(v) = αx(v)+βy(v) for any pair of positive coefficients
α and β. Notice that this 0-form satisfies the same convex combina-
tion condition: z(vi) =

∑
vj∈N (i) wijz(vj). As they are non neg-

ative, one can identify these coefficients wij to the diagonal Hodge
star of primal 1-forms (see Section 7) defined by a particular met-
ric. Therefore, the relationship 0 =

∑
vj∈N (i) wij(z(vj)− z(vi))

is equivalent to: d ? dz = 0. There are two immediate conclu-
sions:

� the 1-form ω = dz is closed (since it is the exterior derivative
of a 0-form), and

� it is also co-closed since δω = (?d?)dz = ?(d ? dz) = 0.

To use the previously defined 1-form ω to prove Tutte’s theorem,
Gortler et al. then invoke the usual definition of index of vector
fields, i.e., the number of revolutions that the direction of the vector
fields does along any small curve around this vertex. This concept is
one of the oldest in Algebraic Topology, initially stated by Poincaré
and then developed by Hopf and Morse in the continuous case. Its
discrete counterpart was first proposed by Banchoff, and used for
instance in [Lazarus and Verroust 1999]. A discrete Poincare-Hopf
index theorem also holds, stating that the sum of all indices must
be equal to 2 for a genus-0 patch. The final argument uses the link
between (co)closed forms and their indices. Indeed, because we
found a closed and coclosed form ω, it can be easily shown that
these two properties induce that the index of each face must be less
or equal to zero, as well as the index of each vertex. Because the
boundary of the patch is convex, only two vertices on the boundary
have index 1. Since all the indices must sum to 2 and each interior
index must be less than zero, we can conclude that each interior
index is zero. Because this argument is valid for every positive pair
(α, β), one can easily deduce that each interior face is convex and
each vertex is a “wheel”; thus, injectivity can be guaranteed.

This rather elegant proof demonstrates how discrete forms and their
obvious links to Algebraic Topology can be quite powerful in a va-
riety of applications. We also point the interested reader to other
papers, such as [Mercat 2001; Gu and Yau 2003], for which special
discrete Hodge stars are defined to satisfy a discrete definition of
conformality: there are also very interesting research on this partic-
ular topic, once again using the calculus of exterior forms.

8.2 Electromagnetism with Forms

Electromagnetism can be formulated very elegantly using differen-
tial forms. For a detailed exposition of the geometric structure in
E&M, we refer the reader to [Bossavit 1998] and [Warnick et al.
1997]. In this approach, the electric field E is represented by a 1-
form as the integral of E along a path traced by a test charge q,
and is equal to the electromotive force experienced by that charge.
The electric displacement L as well as the current density J are
represented by 2-forms. The charge distribution ρ is a 3-form. The
magnetic field B is represented by a 2-form since it is measured as
a flux. whereas the magnetic field intensityH is a 1-form.

With these conventions, Maxwell’s equations can be rewritten as
follows:

∂tB + dE = 0, −∂tL+ dH = J, dL = ρ, (14)

subject to the constitutive equations:

L = εE, H = µB, (15)

where ε is the permittivity, and µ is the permeability. The consti-
tutive relations (15) are very similar to the Hodge star operator that
transforms a k-form to an (n-k)-form. Here, ε operates on the elec-
tric field E (1-form) to yield the electric displacement L (2-form)
while µ transforms the magnetic fieldB (2-form) into the magnetic
field intensity H (1-form). To this end, one may think of both ε
and µ as Hodge star operators induced from appropriately chosen
metrics. Note that the balance laws in (14) are metric-independent.

As the reader can guess, one can readily discretize this represen-
tation of the physical quantities E, L, . . . and the associated sys-
tem of equations (14-15) using the tools presented in this chapter.
The resulting numerical algorithm preserves exactly the geometric
structure of the system, see [Bossavit 1998].

8.3 Fluids

The geometric structure of Fluid Mechanics, specifically Euler’s
equations for inviscid fluids, has been investigated (see [Mars-
den and Weinstein 1983] and references therein). In this geo-
metric framework, vorticity is represented as a two-form (an area-
form) and Euler’s equations can be written as vorticity advection.
Roughly speaking, vorticity measures the rotation of a fluid par-
cel; we say the fluid parcel has vorticity when it spins as it moves
along its path. Vorticity advection means that the vorticity (as a
two-form) moves dynamically as if it is pushed forward by the fluid
flow. The integral of the vorticity on a given bounded domain is
equal, by Stokes theorem, to the circulation around the loop enclos-
ing the domain. This quantity as the loop is advected by the fluid is
conserved in the absence of external forcing, as well as the total en-
ergy of the fluid. Inspired by this geometric viewpoint and in light
of the present development of Discrete Exterior Calculus, we have
proposed a discrete differential approach to fluid mechanics and an
integration scheme that satisfy the properties of conservation of cir-
culation, see [Elcott et al. 2005] for further details.

9 Conclusions
In this chapter, we have provided an introduction to discrete
differential forms and explained how they can be extremely useful
in computational science. A convenient Discrete Exterior Calculus
solely based on values stored on a discrete manifold has been
derived. In the common 3D case, this calculus for scalar and vector
fields can be summarized by the following schematic graph:

We have also given a discrete version of the Hodge decomposition,
useful for a number of computations in various fields. This geo-
metric approach to computations is particularly novel, thus many
details need to be explored and proven superior to the current ap-
proaches. In order to work towards this goal, more work needs to be
done to further demonstrate that this idea of forms as fundamental
readily-discretizable elements of differential equations can be suc-
cessfully used in various other contexts where predictive power is
crucial.
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Further Reading
Despite a large number of theoretical books, we are aware of only a few
books with a truly “applied flavor”, in line with this chapter. For applications
based on this exterior calculus or other geometric algebras, see [Bossavit
1998; Flanders 2001; Bobenko and Seiler 1999; Doran and Lasenby 2003;
Gross and Kotiuga 2004; Ramaswamy and Shapiro 2004]. The reader in-
terested in the application of differential forms to E&M is further referred
to [Warnick et al. 1997], for applications in fluid mechanics see [Marsden
and Weinstein 1983], and in elasticity see [Kanso et al. 2005] and [Frankel
2004]. The reader is also invited to check out current developments of vari-
ants of DEC, for instance, in [Dimakis and Müller-Hoissen 1994; Schreiber
2003; Zapatrin 1996; Harrison 2005].

Finally, the interested reader can find additional material on the following
websites: Graphics and Applied Geometry at Caltech:
http://multires.caltech.edu/pubs/
http://www.geometry.caltech.edu/
Computational E&M (Alain Bossavit):
http://www.lgep.supelec.fr/mse/perso/ab/bossavit.html
Discrete Vector Fields and Combinatorial Topology (R. Forman):
http://math.rice.edu/∼forman/
Discrete Mechanics at Caltech (Jerrold E. Marsden):
http://www.cds.caltech.edu/∼marsden/
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Chapter 8:
Building Your Own DEC at Home

Sharif Elcott
Caltech

Peter Schröder
Caltech

1 Overview

The methods of Discrete Exterior Calculus (DEC) have given birth
to many new algorithms applicable to areas such as fluid simula-
tion, deformable body simulation, and others. Despite the (possi-
bly intimidating) mathematical theory that went into deriving these
algorithms, in the end they lead to simple, elegant, and straight-
forward implementations. However, readers interested in imple-
menting them should note that the algorithms presume the exis-
tence of a suitable simplicial complex data structure. Such a data
structure needs to support local traversal of elements, adjacency in-
formation for all dimensions of simplices, a notion of a dual mesh,
and all simplices must be oriented. Unfortunately, most publicly
available tetrahedral mesh libraries provide only unoriented rep-
resentations with little more than vertex-tet adjacency information
(while we need vertex-edge, edge-triangle, edge-tet, etc.). For those
eager to implement and build on the algorithms presented in this
course without having to worry about these details, we provide an
implementation of a DEC-friendly tetrahedral mesh data structure
in C++. This chapter documents the ideas behind the implementa-
tion.

1.1 Motivation

Extending a classic pointer-based mesh data structure to 3D is
unwieldy, error-prone, and difficult to debug. We instead take a
more abstract set-oriented view in the design of our data structure,
by turning to the formal definition of an abstract simplicial com-
plex. This gives our implementation the following desirable prop-
erties:

• We treat the mesh as a graph and perform all of our operations
combinatorially.

• There is no cumbersome pointer-hopping typical of most mesh
data structures.

• The design easily generalizes to arbitrary dimension.
• The final result is very compact and simple to implement.

In effect we are taking advantage of the fact that during assembly
of all the necessary structures one can use high level, abstract data
structures. That way formal definitions can be turned into code al-
most verbatim. While these data structures (e.g., sets and maps)
may not be the most efficient for computation, an approach which
uses them during assembly is far less error prone. Once every-
thing has been assembled it can be turned easily into more efficient
packed representations (e.g., compressed row storage format sparse
matrices) with their more favorable performance during the actual
computations which occur, e.g., in physical simulation.

1.2 Outline

We will begin with a few definitions in Section 2, and see how
these translate into our tuple-based representation in Section 3. The
boundary operator, described in Section 4, facilitates mesh traver-
sal and implements the discrete exterior derivative. We show how

face

face

face
face

Figure 1: Some typical examples of 2D mesh representations
(from [Joy et al. 2002]; used with permission). Such pointer-based
data structures become quite difficult to manage once they are ex-
tended to 3D.

everything is put together in Section 5. Finally, we discuss our im-
plementation of the DEC operators in Section 6.

2 Definitions

We begin by recalling the basic definitions of the objects we are
dealing with. The focus here is on the rigorous mathematical def-
initions in a form which then readily translates into high level al-
gorithms. The underlying concepts are simply what we all know
informally as meshes in either two (triangle) or three (tet) dimen-
sions.

Simplices A simplex is a general term for an element of the
mesh, identified by its dimension. 0-simplices are vertices, 1-
simplices are edges, 2-simplices are triangles, and 3-simplices are
tetrahedra.

Abstract Simplicial Complex This structure encodes all the
relationships between vertices, edges, triangles, and tets. Since we
are only dealing with combinatorics here the atomic element out
of which everything is built are the integers 0 ≤ i < n referencing
the underlying vertices. For now they do not yet have point po-
sitions in space. Formally, an abstract simplicial complex is a set
of subsets of the integers 0 ≤ i < n, such that if a subset is con-
tained in the complex then so are all its subsets. For example, a 3D
complex is a collection of tetrahedra (4-tuples), triangles (3-tuples),
edges (2-tuples), and vertices (singletons), such that if a tetrahedron
is present in the complex then so must be its triangles, edges, and
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vertices. All our simplicial complexes will be proper three or two
manifolds, possibly with boundary and may be of arbitrary topol-
ogy (e.g., containing voids and tunnels).

Manifold The DEC operators that we build on are defined only
on meshes which represent manifolds. Practically speaking this
means that in a 3D simplicial complex all triangles must have two
incident tets only (for a boundary triangle there is only one incident
tet). Every edge must have a set of tets incident on it which form
a single “ring” which is either open (at the boundary) or closed (in
the interior). Finally for vertices it must be true that all incident tets
form a topological sphere (or hemisphere at the boundary). These
properties should be asserted upon reading the input. For example,
for triangles which bound tets one must assert that each such tri-
angle occurs in at most two tets. For an edge the “ring” property
of incident tets can be checked as follows. Start with one incident
tet and jump across a shared triangle to the next tet incident on the
edge. If this walk leads back to the original tet and all tets incident
on the edge can thusly be visited, the edge passes the test. (For
boundary edges such a walk starts at one boundary tet and ends
at another.) The test for vertices is more complex. Consider all
tets incident on the given vertex. Using the tet/tet adjacency across
shared triangles one can build the adjacency graph of all such tets.
This graph must be a topological sphere (or hemisphere if the vertex
is on the boundary).

Since we need everything to be properly oriented we will only allow
orientable manifolds (i.e., no Möbius strips or Klein bottles).

Regularity To make life easier on ourselves we also require the
simplicial complex to be strongly regular. This means that sim-
plices must not have identifications on their boundaries. For ex-
ample, edges are not allowed to begin and end in the same vertex.
Similarly, the edges bounding a triangle must not be identified nor
do we allow edges or triangles bounding a tet to be identified. In
practice this is rarely an issue since the underlying geometry would
need to be quite contorted for this to occur. Strictly speaking though
such identifications are possible in more general, abstract settings
without violating the manifold property.

Embedding It is often useful to distinguish between the topol-
ogy (neighbor relationships) and the geometry (point positions) of
the mesh. A great deal of the operations performed on our mesh can
be carried out using only topological information, i.e., without re-
gard to the embedding. The embedding of the complex is given by
a map p : [0,n) "→ (x,y,z) ∈ R3 on the vertices (which is extended
piecewise linearly to the interior of all simplices). For example,
when we visualize a mesh as being composed of piecewise linear
triangles (for 2D meshes) or piecewise linear tets, we are dealing
with the geometry. Most of the algorithms we describe below do
not need to make reference to this embedding. When implementing
these algorithms it is useful to only think in terms of combinatorics.
There is only one stage where we care about the geometry: the com-
putation of metric dependent quantities needed in the definition of
the Hodge star.

3 Simplex Representation

Ignoring orientations for a moment, each k-simplex is represented
as a (k + 1)-tuple identifying the vertices that bound the simplex.
In this view a tet is simply a 4-tuple of integers, a triangle is a 3-
tuple of integers, an edge is a 2-tuple, and a vertex is a singleton.

Note that all permutations of a given tuple refer to the same sim-
plex. For example, (i, j,k) and ( j, i,k) are different aliases for the
same triangle. In order to remove ambiguities, we must designate
one representative alias as the representation of the simplex in our
data structures. We do this by using the sorted permutation of the
tuple. Thus each simplex (tuple) is stored in our data structures as
its canonical (sorted) representative. Then if we, for example, need
to check whether two simplices are in fact the same we only need
to compare their representatives element by element.

All this information is stored in lists we designate V, E, F, and T.
They contain one representative for every vertex, edge, triangle, and
tet, respectively, in the mesh.

3.1 Forms

The objects of computation in an algorithm using DEC are forms.
Formally, a differential k-form is a quantity that can be integrated
over a k dimensional domain. For example, consider the expression∫

f (x)dx (x being a scalar). The integrand f (x)dx is called a 1-
form, because it can be integrated over any 1-dimensional interval.
Similarly, the dA in

∫ ∫
dA would be a 2-form.

Discrete differential forms are dealt with by storing the results of
the integrals themselves, instead of the integrands. That is, discrete
k-forms associate one value with each k-simplex, representing the
integral of the form over that simplex. With this representation we
can recover the integral over any k-dimensional chain (the union of
some number of k-simplices) by summing the value on each sim-
plex (using the linearity of the integral).

Since all we have to do is to associate one value with each simplex,
for our purposes forms are simply vectors of real numbers where
the size of the vector is determined by the number of simplices of
the appropriate dimension. 0-forms are vectors of size |V|, 1-forms
are vectors of size |E|, 2-forms are vectors of size |F|, and 3-forms
are vectors of size |T|. Such a vector representation requires that we
assign an index to each simplex. We use the position of a simplex in
its respective list (V, E, F, or T) as its index into the form vectors.

3.2 Orientation

Because the vectors of values we store represent integrals of the as-
sociated k-form over the underlying simplices, we must keep track
of orientation. For example, reversing the bounds of integration on∫ b

a f (x)dx flips the sign of the resulting value. To manage this we
need an intrinsic orientation for each simplex. It is with respect
to this orientation that the values stored in the form vectors receive
the appropriate sign. For example, suppose we have a 1-form f
with value fi j assigned to edge e = (i, j); that is, the real number
fi j is the integral of the 1-form f over the line segment (pi, p j). If
we query the value of this form on the edge ( j, i) we should get
− fi j.

i

  (i,j,k)
  (j,k,i)
–(j,i,k)

  (j,i,k)
  (i,k,j)
–(i,j,k)

j

k

i

j

k

...
...

Figure 2: All permutations of a triple (i, j,k) refer to the same tri-
angle, and the sign of the permutation determines the orientation.
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Hence every tuple must be given a sign indicating whether it agrees
(+) or disagrees (−) with the intrinsic orientation of the simplex.
Given a set of integers representing a simplex, there are two equiv-
alence classes of orderings of the given tuple: the even and odd
permutations of the integers in question. These two equivalence
classes correspond to the two possible orientations of the simplex
(see Fig. 2).

Note that assigning a sign to any one alias (i.e., the representative)
implicitly assigns a sign to all other aliases. Let us assume for a
moment that the sign of all representatives is known. Then the sign
S of an arbitrary tuple t, with representative r, is

S(t) =
{

S(r) if t is in the same equivalence class as r
−S(r) if t is in the opposite equivalence class.

More formally, let P be the permutation that permutes t into r (i.e.,
r = P(t)). Then

S(t) = S(P)S(P(t)).

(Here S(P) denotes the sign of the permutation P with +1 for even
and −1 for odd permutations.)

All that remains, then, is to choose an intrinsic orientation for each
simplex and set the sign of the representative alias accordingly. In
general the assignment of orientations is arbitrary, as long as it is
consistent. For all subsimplices we choose the representative to be
positively oriented, so that the right-hand-side of the above expres-
sion reduces to S(P). For top-level simplices (tets in 3D, triangles
in 2D), we use the convention that a positive volume corresponds to
a positively oriented simplex. We therefore require a volume form
which, together with an assignment of points to vertices, will allow
us to orient all tets. Recall that a volume form accepts three (for 3D;
two for 2D) vectors and returns either a positive or negative num-
ber (assuming the vectors are linearly independent). So the sign of
a 4-tuple is:

S(i0, i1, i2, i3) = S(Vol(pi1 − pi0 , pi2 − pi0 , pi3 − pi0)).

4 The Boundary Operator
The faces of a k-simplex are the (k−1)-simplices that are incident
on it, i.e., the subset of one lower dimension. Every k-simplex has
k + 1 faces. Each face corresponds to removing one integer from
the tuple, and the relative orientation of the face is (−1)i where i is
the index of the integer that was removed. To clarify:

• The faces of a tet +(t0, t1, t2, t3) are −(t0, t1, t2), +(t0, t1, t3),
−(t0, t2, t3), and +(t1, t2, t3).

• The faces of a triangle +( f0, f1, f2) are +( f0, f1),−( f0, f2), and
+( f1, f2).

• The faces of an edge +(e0,e1) are −(e0) and +(e1).

We can now define the boundary operator ∂ which maps simplices
to their their faces. Given the set of tets T we define ∂ 3 : T→ F4 as

∂ 3(+(i0, i1, i2, i3)) = {−(i0, i1, i2),+(i0, i1, i3),
−(i0, i2, i3),+(i1, i2, i3)}.

Similarly for ∂ 2 : F → E3 (which maps each triangle to its three
edges) and ∂ 1 : E→V2 (which maps each edge to its two vertices).

We represent these operators as sparse adjacency matrices (or,
equivalently, signed adjacency lists), containing elements of type
+1 and −1 only. So ∂ 3 is implemented as a matrix of size |F|× |T|
with 4 non-zero elements per column, ∂ 2 an |E|× |F| matrix with
3 non-zero elements per column, and ∂ 1 a |V|× |E| matrix with 2
non-zero elements per column (one +1 and one −1). The trans-
poses of these matrices are known as the coboundary operators,

and they map simplices to their cofaces—neighbor simplices of one
higher dimension. For example, (∂ 2)T maps an edge to the “pin-
wheel” of triangles incident on that edge.

Figure 3: The boundary operator identifies the faces of a simplex
as well as their relative orientations. In this illustration, arrows
indicate intrinsic orientations and signs indicate the relative orien-
tation of a face to a parent.

These matrices allow us to iterate over the faces or cofaces of any
simplex, by walking down the columns or across the rows, respec-
tively. In order to traverse neighbors that are more than one dimen-
sion removed (i.e., the tets adjacent to an edge or the faces adjacent
to a vertex) we simply concatenate the appropriate matrices, but
without the signs. (If we kept the signs in the matrix multiplication
any such consecutive product would simply return the zero matrix
reflecting the fact that the boundary of a boundary is always empty.)

5 Construction
Although we still need a few auxiliary wrapper and iterator data
structures to provide an interface to the mesh elements, the simplex
lists and boundary matrices contain the entirety of the topological
data of the mesh. All that remains, then, is to fill in this data.

We read in our mesh as a list of (x,y,z) vertex positions and a list of
4-tuples specifying the tets. Reading the mesh in this format elimi-
nates the possibility of many non-manifold scenarios; for example,
there cannot be an isolated edge that does not belong to a tet. We
assume that all integers in the range [0,n) appear at least once in
the tet list (this eliminates isolated vertices), and no integer outside
of this range is present.

Once T is read in, building E and F is trivial; for each tuple in T,
append all subsets of size 2 and 3 to E and F respectively. We must
be sure to avoid duplicates, either by using a unique associative
container, or by sorting the list afterward and removing duplicates.
Then the boundary operator matrices are constructed as follows:

for each simplex s
construct a tuple for each face f of s

as described in Section 4
determine the index i of f by locating

its representative
set the entry of the appropriate matrix

at row i, column s to S( f )

Figure 4 shows a complete example of a mesh and its associated
data structure.

6 DEC Operators

Now we discuss the implementation of the two most commonly
used DEC operators: the exterior derivative and the Hodge star.
As we will see, in the end these also amount to nothing more than
sparse matrices that can be applied to our form vectors.
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Figure 4: A simple mesh and all associated data structures.

6.1 Exterior Derivative

As we have seen earlier in the course, the discrete exterior derivative
is defined using Stokes’ theorem such that

∫

σ
dω =

∫

∂σ
ω

where ω is a k-form, and σ is a (k + 1)-simplex. In words, this
equation states that the evaluation of dω on a simplex is equal to
the evaluation of ω on the boundary of that simplex.

Let us try to understand this theorem with a few examples. Consider
a 0-form f , i.e., a function giving values at vertices. With that, d f is
a 1-form which can be integrated along an edge (say with endpoints
denoted a and b) and Stokes’ theorem states the well known fact

∫

[a,b]
d f = f (b)− f (a).

The right hand side is simply the evaluation of the 0-form f on the
boundary of the edge (i.e., its endpoints), with appropriate signs
indicating the orientation of the edge.

What about triangles? If f is a 1-form (one value per edge), then
d f is a 2-form that can be evaluated on a triangle abc as

∫

∆abc
d f =

∫

∂ (∆abc)
f

=
∫

[a,b]
f +

∫

[b,c]
f +

∫

[c,a]
f

= fab + fbc + fca

using the subscript notation from Section 3.2. Again, the right hand
side is simply the evaluation of the 1-form f on the boundary of the
triangle—its three edges.

We can restate the general form of the theorem for our discrete
forms as

dωσ = ∑
s∈∂σ

ωs

Written this way, it is easy to see that this can be implemented as
the multiplication of a form vector by the coboundary matrix ∂ T .

6.2 The Dual Mesh and the Hodge Star

Every complex has a dual. The dual of a simplicial complex is a cell
complex where primal k-simplices correspond to dual (n−k)-cells.
So in our case there are |V| dual polyhedra, |E| dual polygons, |F|
dual edges, and |T| dual vertices, corresponding to primal vertices,
edges, triangles, and tetrahedra, respectively (see Fig. 5). Note that,
since every dual cell is co-located with a primal simplex and the
cardinality is the same, in the code there is no explicit representa-
tion for the dual mesh. Where appropriate, dual cells are queried
through the corresponding primal simplex index.

Figure 5: There is one dual polyhedron for every primal vertex, one
dual polygon for every primal edge, one dual edge for every primal
triangle, and one dual vertex for every primal tetrahedron.

The operator that transforms a primal k-form into a dual (n− k)-
form is known as the Hodge star. There are many different kinds
of Hodge stars, the simplest of which is the diagonal Hodge star.

We again attempt to motivate the definition with some intuition.
When transferring a quantity from a primal simplex to a dual cell,
the quantities must “agree” somehow. Since these are integral val-
ues, simply setting the value on the dual to be equal to the value
on the primal does not make sense, as the domain of integration is
unrelated. Instead, we require that the integral density be equal. So,
if ω denotes the evaluation of a form on a primal k-simplex σ , then
!ω is the value on the dual (n− k)-cell σ̃ such that

ω
Vol(σ)

=
!ω

Vol(σ̃)

allowing us to define ! as

! =
Vol(dual)

Vol(primal)
.

In effect the diagonal Hodge star requires that the averages of the
integrand over the respective domains agree.

This is represented as a diagonal matrix so that, again, applica-
tion of the operator becomes a simple matrix-vector multiplication.
Note that when transforming quantities from the dual to the primal,
the inverse of this matrix is used. Since the matrix is diagonal we
only store the diagonal entries. There are as many of these as there
are simplices of the appropriate dimension. Consequently the diag-
onal Hodge star can be represented with vectors of length |V|, |E|,
|F|, and |T| respectively.
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6.2.1 Calculating Dual Volumes

So far the entire implementation has been in terms of the combina-
torics of the mesh, but when constructing the Hodge star we must
finally introduce the geometry. After all, the purpose of the Hodge
star is to capture the metric. The volumes of the primal simplices
are straightforward: 1 for vertices, length for edges, area for tri-
angles, and volume for tetrahedra. The dual volumes are similarly
defined, but in order to avoid constructing the graph of the dual
mesh explicitly, we calculate the dual volumes as follows.

If we use the circumcentric realization of the dual mesh (i.e., dual
vertices are at the circumcenters of the associated tets), we can ex-
ploit the following facts when calculating the dual volumes.1

• A dual edge (dual of a primal triangle t) is linear, is normal to
t, and is collinear with the circumcenter of t (though the line
segment need not necessarily pass through t).

• A dual polygon (dual of a primal edge e) is planar, is orthogonal
to e, and is coplanar with the center of e (though it need not
intersect e).

• A dual cell (dual of a primal vertex v) is the convex intersection
of the half-spaces defined by the perpendicular bisectors of the
edges incident on v.

Just as with primal vertices, the volume of a dual vertex is defined to
be 1. For the others, we can conceptually decompose each cell into
pieces bounded by lower dimensional cells, and sum the volumes
of the pieces. For example, a dual polyhedron can be seen as the
union of some number of pyramids, where the base of each pyramid
is a dual polygon and the apex is the primal vertex. Similarly, a
dual polygon can be seen as a union of triangles with dual edges
at the bases, and dual edges can be seen as a union of (two) line
segments with dual vertices at the bases. The following pseudocode
illustrates how the volumes are calculated.

vec3 C( Simplex s ); // gives the circumcenter of s

// Initialize all dual volumes to 0.

// Dual edges
for each primal triangle f

for each primal tet t f incident on f
b← t f .dualVolume // 1
h← ||C( f )−C(t f )||
f .dualVolume← f .dualVolume+ 1

1 bh

// Dual polygons
for each primal edge e

for each primal triangle fe incident on e
b← fe.dualVolume
h← ||C(e)−C( fe)||
e.dualVolume← e.dualVolume+ 1

2 bh

// Dual polyhedra
for each primal vertex v

for each primal edge ev incident on v
b← ev.dualVolume
h← ||C(v)−C(ev)||
v.dualVolume← v.dualVolume+ 1

3 bh

Note that, even when dealing with the geometry of the mesh, this
part of the implementation still generalizes trivially to arbitrary di-
mension.

1 Circumcentric duals may only be used if the mesh satisfies the Delau-
nay criterion. If it does not, a barycentric dual mesh may be used. However,
care must be taken if a barycentric dual mesh is used, as dual edges are no
longer straight lines (they are piecewise linear), dual faces are no longer
planar, and dual cells are no longer necessarily convex.

7 Summary

All the machinery discussed above can be summarized as fol-
lows:

• k-forms as well as the Hodge star are represented as vectors of
length |V|, |E|, |F|, and |T|;

• the discrete exterior derivative is represented as (transposes of)
sparse adjacency matrices containing only entries of the form
+1 and −1 (and many zeros); the adjacency matrices are of
dimension |V|× |E| (boundary of edges), |E|× |F| (boundary of
triangles), and |F|× |T| (boundary of tets).

In computations these matrices then play the role of operators such
as grad, curl, and div and can be composed to construct operators
such as the Laplacian (and many others).

While the initial setup of these matrices is best accomplished with
associative containers, their final form can be realized with standard
sparse matrix representations. Examples include a compressed row
storage format, a vector of linked lists (one linked list for each row),
or a two dimensional linked list (in effect, storing the matrix and its
transpose simultaneously) allowing fast traversal of either rows or
columns. The associative containers store integer tuples together
with orientation signs. For these we suggest the use of sorted inte-
ger tuples (the canonical representatives of each simplex). Appro-
priate comparison operators needed by the container data structures
simply perform lexicographic comparisons.

And that’s all there is to it!
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Stable, Circulation-Preserving, Simplicial Fluids
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Figure 1: Discrete Fluids: we present a novel geometric integration scheme for fluids applicable to tetrahedral meshes of arbitrary domains. Aside from
resolving the boundaries precisely, our approach also provides an accurate treatment of vorticity through a discrete preservation of Kelvin’s circulation
theorem. Here, a hot smoke cloud rises inside a bunny shaped domain of 7K vertices (32K tets—the equivalent complexity of a regular 193 grid), significantly
reducing the computational cost for such an intricate boundary compared to regular grid-based techniques (0.47s/frame on a Pentium 4, 3GHz).

Abstract
Visual quality, low computational cost, and numerical stability are
foremost goals in computer animation. An important ingredient
in achieving these goals is the conservation of fundamental motion
invariants. For example, rigid and deformable body simulation ben-
efits greatly from conservation of linear and angular momenta. In
the case of fluids, however, none of the current techniques focuses
on conserving invariants, and consequently, they often introduce a
visually disturbing numerical diffusion of vorticity. Visually just as
important is the resolution of complex simulation domains. Doing
so with regular (even if adaptive) grid techniques can be computa-
tionally delicate. In this chapter, we propose a novel technique for
the simulation of fluid flows. It is designed to respect the defining
differential properties, i.e., the conservation of circulation along ar-
bitrary loops as they are transported by the flow. Consequently, our
method offers several new and desirable properties: (1) arbitrary
simplicial meshes (triangles in 2D, tetrahedra in 3D) can be used
to define the fluid domain; (2) the computations are efficient due
to discrete operators with small support; (3) the method is stable
for arbitrarily large time steps; (4) it preserves discrete circulation
avoiding numerical diffusion of vorticity; and (5) its implementa-
tion is straightforward.

1 Introduction
Conservation of motion invariants at the discrete computational
level, e.g., linear and angular momenta in solid mechanics, is now
widely recognized as being an important ingredient in the construc-
tion of numerically stable simulations with a high degree of visual
realism [Marsden and West 2001]. Much of the progress in this
direction has been enabled by a deeper understanding of the under-
lying geometric structures and how they can be preserved as we go
from continuous models to discrete computational realizations. So
far, advances of this type have yet to deeply impact fluid flow sim-
ulations. Current methods in fluid simulation are rarely designed to
conserve defining physical properties. Consider, for example, the
need in many methods to continually project the numerically up-
dated velocity field onto the set of divergence free velocity fields;
or the need to continually reinject vorticity lost due to numerical
dissipation as a simulation progresses. In this chapter, we intro-
duce a novel, geometry-based algorithm for fluid simulation which,
among other desirable properties, exactly preserves vorticity at a
discrete level.

1.1 Previous Work

Fluid Mechanics has been studied extensively in the scientific com-
munity both mathematically and computationally. The physical be-
havior of incompressible fluids is usually modeled by the Navier
Stokes (NS) equations for viscous fluids and by the Euler equations
for inviscid (non-viscous) fluids. Numerical approaches in compu-
tational fluid dynamics typically discretize the governing equations
through Finite Volumes (FV), Finite Elements (FE) or Finite Dif-
ferences (FD) methods. We will not attempt to review the many
methods proposed (an excellent survey can be found in [Langtangen
et al. 2002]) and instead focus on approaches used for fluids in com-
puter graphics. Some of the first fluid simulation techniques used in
the movie industry were based on Vortex Blobs [Yaeger et al. 1986]
and Finite Differences [Foster and Metaxas 1997]. To circumvent
the ill-conditioning of these iterative approaches for large time steps
and achieve unconditional stability, Jos Stam [1999; 2001] intro-
duced to the graphics community the method of characteristics for
fluid advection and the Helmholtz-Hodge decomposition to ensure
the divergence-free nature of the fluid motion [Chorin and Mars-
den 1979]. The resulting algorithm, called Stable Fluids, is an ex-
tremely successful semi-Lagrangian approach based on a regular
grid Eulerian space discretization, that led to many refinements and
extensions which have contributed to the enhanced visual impact of
fluid animations. Among others, these include the use of staggered
grids and monotonic cubic interpolation [Fedkiw et al. 2001]; im-
provements in the handling of interfaces [Foster and Fedkiw 2001];
extensions to curved surfaces [Stam 2003; Tong et al. 2003; Shi and
Yu 2004] and visco-elastic objects [Goktekin et al. 2004]; and goal
oriented control of fluid motion [Treuille et al. 2003; McNamara
et al. 2004; Pighin et al. 2004; Shi and Yu 2005].

1.2 Shortcomings of Stable Fluids

However, the Stable Fluids technique is not without drawbacks.
Chief among them is the difficulty of accomodating complex do-
main boundaries with regular grids, as addressed recently with hy-
brid meshes [Feldman et al. 2005]. Local adaptivity [Losasso et al.
2004] can greatly help, but the associated octree structures require
significant overhead. Note that regular partitions of space (adap-
tive or not) can suffer from preferred direction sampling, leading to
visual artifacts similar to aliasing in rendering.

Additionally, the different variants of the original Stable Fluids al-
gorithm [Stam 1999] are all based on a class of discretization ap-
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proaches known in Computational Fluid Dynamics as fractional
step methods. In order to numerically solve the Euler equations
over a time step, they proceed in two stages. They first update
the velocity field assuming the fluid is inviscid and disregard the
divergence-free constraint. Then, the resulting velocity is projected
onto the closest divergence-free flow (in the L2 sense) through
an exact Helmholtz-Hodge decomposition. Despite the simplic-
ity of this fractional integration, one of its consequences is ex-
cessive numerical diffusion: advecting velocity before reproject-
ing onto a divergence-free field creates major energy loss. While
this shortcoming is not a major issue in graphics as the visual
impact of such a loss is not always significant, another conse-
quence of the fractional integration is an excessive diffusion of vor-
ticity. This last issue affects the motion significantly, since the
presence of vortices in liquids and volutes in smoke is one of the
most important visual cues of our perception of fluidity. Vorticity
confinement [Steinhoff and Underhill 1994; Fedkiw et al. 2001]
was designed to counteract this diffusion through local reinjec-
tion of vorticity. Unfortunately, it is hard to control how much
can safely be added back without affecting stability or plausibil-
ity of the results. Adding vortex particles can further reduce this
loss [Guendelman et al. 2005], but adds computational cost to
the Stable Fluids method without suppressing the loss completely.
One can understand this seemingly in-
evitable numerical diffusion through
the following geometric argument: the
solutions of Euler equations are geo-
desic (i.e., shortest) paths on the man-
ifold of all possible divergence-free flows; thus, advecting the fluid
out of the manifold is not a proper substitute to this intrinsic con-
strained minimization, even if the post re-projection is, in itself, ex-
act. For a more detailed numerical analysis of this flaw, see [Chang
et al. 2002].

1.3 Towards a Better SetUp

In this chapter we show that a careful setup of discrete differen-
tial quantities, designed to respect structural relationships such as
vector calculus identities, leads in a direct manner to a numerical
simulation method which respects the defining geometric structure
of the fluid equations. A key ingredient in this approach is the
location of physical quantities on the appropriate geometric struc-
tures (i.e., vertices, edges, faces, or cells). This greatly simplifies
the implementation as all variables are intrinsic. It also ensures
that the approach works for curved manifolds without any changes.
With the help of a discrete calculus on simplicial complexes we
construct a novel integration scheme which employs intrinsically
divergence-free variables. This removes the need to enforce the
usual divergence-free constraint through a numerically lossy pro-
jection step. Our time integration method by construction pre-
serves circulation and consequently vorticity. It accomplishes this
while being simple, numerically efficient, and unconditionally sta-
ble, achieving high visual quality even for large time steps. Al-
though our approach shares the same algorithmic structure as Sta-
ble Fluids based methods (use of backward path tracing and sparse
linear systems), it fundamentally differs from previous techniques
on the following points:

• our technique is based on a classical vorticity formulation of
the Navier-Stokes and Euler equations; unlike most vorticity-
based methods in CFD and CG, our approach is Eulerian as we
work only with a fixed mesh and not a Lagrangian representa-
tion involving vorticity particles (or similar devices);

• we use an unconditionally-stable, semi-Lagrangian backward
advection strategy for vertices just like Stable Fluids; in con-
trast to Stable Fluids however we do not point-sample ve-
locity, but rather compute integrals of vorticity; this simple

change removes the need to enforce incompressibility of the
velocity field through projection;

• our strategy exactly preserves circulation along discrete
loops in the mesh; capturing this geometric property of fluid
dynamics guarantees that vorticity does not get dissipated as is
typically the case in Stable Fluids; consequently no vorticity
confinement (or other post processes) are required to maintain
this important element of visual realism;

• our method has multiple advantages from an implementa-
tion point of view: it handles arbitrary meshes (regular grids,
hybrid meshes [Feldman et al. 2005], and even cell complexes)
with non-trivial topology; the operators involved have very
small support leading to very sparse linear systems; all quanti-
ties are stored intrinsically (scalars on edges and faces) without
reference to global or local coordinate frames; the computa-
tional cost is comparable to previous approaches.

Figure 2: Domain Mesh: our fluid simulator uses a simplicial mesh to dis-
cretize the equations of motion; (left) the domain mesh (shown as a cutaway
view) used in Fig. 1; (middle) a coarser version of the flat 2D mesh used in
Fig. 8; (right) the curved triangle mesh used in Fig. 10.

The organization of this chapter is as follows. In Section 2, we
motivate our approach through a brief overview of the theory and
computational algorithms for Fluid Mechanics. We present a novel
discretization of fluid mechanics and a circulation-preserving in-
tegration algorithm in Section 2.2. The computational machinery
required by our approach is developed in Section 3, while the algo-
rithmic details are given in Section 4. Several numerical examples
are shown and discussed in Section 5.

2 Of Motion & Flow Representation
Before going into the details of our algorithm we discuss the under-
lying fluid equations with their relevant properties and how these
can be captured over discretized domains.

2.1 Geometry of Fluid Motion
Euler Fluids Consider an inviscid, incompressible, and homoge-
neous fluid on a domainD in 2 or 3D. The Euler equations, govern-
ing the motion of this fluid (with no external forces for now), can
be written as:

∂u

∂t
+ u · ∇u = −∇p ,

div(u) = 0 , u ‖ ∂D .
(1)

We assume unit density (ρ = 1) and use u to denote the fluid veloc-
ity, p the pressure, and ∂D the boundary of the fluid region D. The
pressure term in Eq. (1) can be dropped easily by rewriting the Euler
equations in terms of vorticity. Recall that traditional vector calcu-
lus defines vorticity as the curl of the velocity field, ωωω = ∇ × u.
Taking the curl (∇×) of Eq.(1), we obtain

∂ωωω

∂t
+ Luωωω = 0 ,

ωωω = ∇× u , div(u) = 0 , u ‖ ∂D .
(2)

where Luωωω is the Lie derivative, equal in our case to u · ∇ωωω −ωωω ·
∇u. In this form, this vorticity-based equation states that vorticity
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is simply advected along the fluid flow. 1 Note that Equation (2)
is equivalent to the more familiar Dωωω

Dt
= ωωω · ∇u, and therefore

already includes the vortex stretching term appearing in Lagrangian
approaches. Roughly speaking, vorticity measures the local spin of
a fluid parcel. Therefore, vorticity advection means that this local
spin moves along with the flow.

Since the integral of vorticity on a given bounded surface equals (by
Stokes’ theorem) the circulation around the bounding loop of the
surface, one can explain the geometric nature of an ideal fluid flow
in particularly simple terms: the circulation around any closed
loop C is conserved throughout the motion of this loop in the
fluid. This key result is known as Kelvin’s circulation theorem, and
is usually written as:

Γ(t) =

∮

C(t)
u · dl = constant , (3)

where Γ(t) is the circulation of the velocity on the loop C at time
t as it gets advected in the fluid. This will be the key to our time
integration algorithm.

Viscous Fluids In contrast to ideal fluids, incompressible viscous
fluids generate very different fluid behaviors. They can be modelled
by the Navier-Stokes equations (compare with Eq. (1)):

∂u

∂t
+ u · ∇u = −∇p+ ν∆u ,

div(u) = 0 , u|∂D = 0 .
(4)

where ∆ denotes the Laplace operator, and ν is the kinematic vis-
cosity. Note that different types of boundary conditions can be
added depending on the chosen model. Despite the apparent simi-
larity between these two models for fluid flows, the added diffusion
term dampens the motion, resulting in a slow decay of circulation.
This diffusion also implies that the velocity of a viscous fluid at the
boundary of a domain must be null, whereas an inviscid fluid could
have a non-zero tangential component on the boundary. Here again,
one can avoid the pressure term by taking the curl of the equations
(compare with Eq. (2)):

∂ωωω

∂t
+ Luωωω = ν∆ωωω ,

ωωω = ∇× u , div(u) = 0 , u|∂D = 0 .
(5)

2.2 Discrete Setup and Time Integration

For a discrete time and space numerical simulation of Eqs. (2)
and (5) we need a discretized geometry of the domain (given as
a simplicial mesh for instance), appropriate discrete analogs of ve-
locity u and vorticity fieldsωωω, along with the operators which act on
them. We will present our choices before describing the geometry-
based time integration approach.

2.2.1 Space Discretization

We discretize the spatial domain in which the flow takes place us-
ing a locally oriented simplicial complex, i.e., either a tet mesh for
3D domains or a triangle mesh for 2D domains, and refer to this
discrete domain asM (see Figure 2). The domain may have non-
trivial topology, e.g., it can contain tunnels and voids (3D) or holes

1Note that this is a more canonical characterization of the motion than
the velocity-based one: the latter was also an advection but under the addi-
tional constraint of keeping the velocity field divergence-free, which is the
reason for the gradient of pressure.

(2D), but is assumed to be compact. To ensure good numerical
properties in the subsequent simulation we require the simplices of
M to be well shaped (aspect ratios bounded away from zero). This
assumption is quite common since many numerical error estimates
depend heavily on the element quality. We use meshes generated
with the method of [Alliez et al. 2005]. Collectively we refer to the
sets of vertices, edges, triangles, and tets as V , E, F , and T .

We will also need a dual mesh. It associates with each original
simplex (vertex, edge, triangle, tet, respectively) its dual (dual cell,
dual face, dual edge, and dual vertex, respectively) (see Fig. 3).
The geometric realization of the dual mesh uses tet circumcenters
as dual vertices and Voronoi cells as dual cells; dual edges are line
segments connecting dual vertices across shared tet faces and dual
faces are the faces of the Voronoi cells. Notice that storing values
on primal simplices or on their associated dual cells is conceptually
equivalent, since both sets have the same cardinality. We will see in
Section 3 that corresponding primal and dual quantities are related
through a simple (diagonal) linear operator.

Figure 3: Primal and Dual Cells: the simplices of our mesh are vertices,
edges, triangles and tets (up); their circumcentric duals are dual cells, dual
faces, dual edges and dual vertices (bottom).

2.2.2 Intrinsic Discretization of Physical Quantities

In order to faithfully capture the geometric structure of fluid me-
chanics on the discrete mesh, we define the usual physical quan-
tities, such as velocity and vorticity, through integral values over
the elements of the meshM. This is the sharpest departure from
traditional numerical techniques in CFD: we not only use values at
nodes and tets (as in FEM and FVM), but also allow association
(and storage) of field values at any appropriate simplex. Depending
on whether a given quantity is defined pointwise, or as a line, area
or volume density, the corresponding discrete representation will
“live” at the associated 0, 1, 2, and 3 dimensional mesh elements.
With this in mind we use a simple discretization of the physical
quantities of fluid mechanics based on fluxes associated to faces.

Velocity as Discrete Flux To encode a coordinate free (intrinsic)
representation of velocity on the mesh we use flux, i.e., the mass of
fluid transported across a given surface area per unit time. Note that
this makes flux an integrated, not pointwise, quantity. On the dis-
crete mesh, fluxes are associated with the triangles of the tet mesh.
Thus fluid velocity u is treated as a 2-form and represented as a
vector U of values on faces (size |F |). This coordinate-free point
of view, also used in [Feldman et al. 2005], is reminiscent of the
staggered grid method used in [Fedkiw et al. 2001] and other non-
collocated grid techniques (see [Goktekin et al. 2004]). In the stag-
gered grid approach one does not store the x, y, z components of a
vector at nodes but rather associates them with the corresponding
grid faces. We may therefore think of the idea of storing fluxes on
the triangles of our tet mesh as a way of extending the idea of stag-
gered grids to the more general simplical mesh setting. This was
previously exploited in [Bossavit and Kettunen 1999] in the context
of E&M computations. It also makes the usual no-transfer bound-
ary conditions easy to encode: boundary faces experience no flux
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across them. Encoding this boundary condition for velocity vectors
stored at vertices is far more cumbersome.

Divergence as Net Flux on Tets Given the incompressibility of the
fluid, the velocity field must be divergence-free (∇ · u = 0). In the
discrete setting, the integral of the divergence over a tet becomes
particularly simple. According to the generalized Stokes’ theorem
this integral equals the sum of the fluxes on all four faces: the dis-
crete notion of divergence is therefore simply the net flux for each
tet. Divergence can therefore be stored as a 3-form, i.e., as a value
associated to each tet (a vector of cardinality |T |). The notion of
incompressibility becomes particularly intuitive: whatever gets in
each tet must be compensated by whatever comes out (see Fig. 4).

Figure 4: Discrete Physical Quantities: in our geometric discretization,
fluid flux lives on faces (left), divergence lives on tets (middle), and vorticity
lives on edges (right).

Vorticity as Flux Spin Finally we need to define vorticity on the
mesh. To see the physical intuition behind our definition, consider
an edge in the mesh. It has a number of faces incident on it, akin
to a paddle wheel (see Figure 4). The flux on each face contributes
a torque to the edge. The sum of all these, when going around an
edge, is the net torque that would “spin” the edge. We can thus give
a physical definition of vorticity as a weighted sum of fluxes on all
faces incident to a given edge. This quantity is now associated with
primal edges—or, equivalently, dual faces—and is thus represented
by a vector Ω of size |E|.

In Section 3, we will see that these physical intuitions can be de-
rived formally from simple algebraic relationships.

2.3 Geometric Integration of Fluid Motion

Since we are using the vorticity formulation of the fluid equations
(Eqs. (2) or (5)) the time integration algorithm must update the dis-
crete vorticity variables which are stored on each primal edge. We
have seen that the fluid equations state that vorticity is advected by
the velocity field. The fundamental idea of our geometric integra-
tion algorithm is thus to ensure that Kelvin’s theorem holds in the
discrete setting: the circulation around any loop in the fluid remains
constant as the loop is advected. This can be achieved by backtrack-
ing loops: for any given loop at the current time, determine its back-
tracked image in the velocity field (“where did it come from?”) and
compute the circulation around the backtracked loop. This value
is then assigned as the circulation around the original loop at the
present time, i.e., circulation is properly advected by construction
(see Figure 5 for a depiction of this loop advection idea).

Since we store vorticity on primal edges, a natural choice for these
loops are the bounding loops of the dual faces associated to each
primal edge (see Figure 3). Notice that these loops are polylines
formed by sequences of dual vertices around a given primal edge.
Consequently an efficient implementation of this idea requires only
that we backtrack dual vertices in the velocity field. Once these
positions are known all backtracked dual loops associated to all
primal edges are known. These Voronoi loops can indeed generate
any discrete, dual loop: the sum of adjacent loops is a larger, outer
loop as the interior edges cancel out due to opposite orientation as
sketched in Fig. 5(right). The evaluation of circulation around these
backtracked loops will be quite straightforward. Invoking Stokes’
theorem, the integral of vorticity over a dual face equals the circu-
lation around its boundary. With this observation we have achieved

our goal of updating vorticities and, by design, ensured a discrete
version of Kelvin’s theorem. The algorithmic details of this simple
geometric approach to time integration of the equations of motion
for fluids will be given in Section 4.

Figure 5: Kelvin’s Theorem: (left) in the continuous setting, the circulation
on any loop being advected by the flow is constant. (middle) our discrete
integration scheme enforces this property on each Voronoi loop, (right) thus
on any discrete loop.

3 Computational Machinery
Now that we have described our choices of spatial and physical dis-
cretizations, along with a way to use them to integrate the fluid’s
motion, we must manipulate the numerics involved in a principled
manner to guarantee proper physical behavior. In this section, we
point out that the intuitive definition of our physical quantities liv-
ing at the different simplices of a mesh can be made precise through
the definition of a discrete differential structure. Consequently, the
basic operators to go from fluxes to the divergence, curl, or Lapla-
cian of the velocity field can be formally defined through the use of
discrete differential forms. We will mostly focus on presenting the
practical implementation of the few operators we need; more im-
portantly, we will show that this implementation reduces to simple
linear algebra with very sparse matrices.

3.1 Discrete Differential Structure

Integrals and Forms In Section 2.2, we have opted for manip-
ulating the physical quantities in the form of a line, surface, and
volume integral computed directly on our meshed domain to ren-
der the setup entirely intrinsic, i.e., with no need for vector fields
to be stored with respect to arbitrary coordinate frames. Such an
integral represents the evaluation of a mathematical entity called a
differential form . In the continuous three-dimensional setting, a
0-form is simply a function on that 3D space. A 1-form, or line-
form, is a quantity that can be evaluated through integration over a
curve. Thus a 1-form can be thought of as a proxy for a vector field,
and its integral over a curve becomes the circulation of this vector
field. A 2-form, or area-form, is to be integrated over a surface,
that is, it can be viewed as a proxy for a vector perpendicular to
that surface (and its evaluation becomes the flux of that vector field
through the surface); finally, a 3-form, or volume-form, is to be in-
tegrated over a volume and can be viewed as a proxy for a function.
Classic calculus and vector calculus can then be substituted with
a special calculus involving only differential forms, called exterior
calculus—the basis of Hodge theory and modern differential geom-
etry (for a comprehensive discussion, see, for example, [Abraham
et al. 1988]).

Discrete Forms and Their Representation However, in our
framework, the continuous domain is replaced (or approximated)
by a mesh, the only structure we can work with. Therefore, the
integrated physical values we store on the mesh corresponds to dis-
crete differential k-forms [Desbrun et al. 2006]. A discrete differ-
ential k-form, k = 0, 1, 2, or 3, is the evaluation (i.e., the integral)
of the differential k-form on all k-cells, or k-simplices. In practice,
discrete k-forms can simply be considered as vectors of numbers
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according to the simplices they live on: 0-forms live on vertices,
and are expressed as a vector of length |V |; correspondingly, 1-
forms live on edges (length |E|), 2-forms live on faces (length |F |),
and 3-forms live on tets (length |T |). Dual forms, i.e., forms that
we will evaluate on the dual mesh, are treated similarly. The reader
should now realize that in our discretization of physical quantities,
the notion of flux that we described is thus a primal 2-form (inte-
grated over faces), while its vorticity is a dual 2-form (integrated
over dual faces), and its divergence becomes a primal 3-form (inte-
grated over tets).

Discrete Differential Calculus on Simplicial Meshes These dis-
crete forms can now be used to build the tools of calculus through
Discrete Exterior Calculus (DEC), a coherent calculus mimicking
the continuous setting that only uses discrete combinatorial and
geometric operations [Munkres 1984; Hirani 2003; Desbrun et al.
2006]. At the core of its construction is the definition of a dis-
crete d operator (analog of the continuous exterior derivative), and
a discrete Hodge star, which will allow us to move values from the
primal mesh to the dual mesh and vice-versa. For a more com-
prehensive introduction to DEC and the use of discrete differential
forms, we refer the interested readers to [Desbrun et al. 2006].

3.2 Two Basic Operators
The computations involved in our approach only require the defin-
ition of two basic operators: one is the exterior derivative d, nec-
essary to compute derivatives, like gradients, divergences, or curls;
the other is the Hodge star, to transfer values from primal simplices
to dual simplices.

Exterior Derivative d Given an oriented mesh, we implement our
first operator by simply assembling the incidence matrices of the
mesh. These will act on the vectors of our discrete forms and im-
plement the discrete exterior derivative operator d as explained in
more details in Appendix A. For our 3D implementation, there are
three sparse matrices involved, which contain only entries of type
0, +1, and −1. Care is required in assembling these incidence ma-
trices, as the orientation must be taken into account in a consistent
manner [Elcott and Schröder 2006]. The first one is d0, the inci-
dence matrix of vertices and edges (|E| rows and |V | columns).
Each row contains a single +1 and −1 for the end points of the
given edge (and zero otherwise). The sign is determined from the
orientation of the edge. The second matrix similarly encodes the
incidence relations of edges and faces (|F | rows and |E| columns),
with appropriate +1 and −1 entries according to the orientation of
edges as one moves around a face. More generally dk is the inci-
dence matrix of k-cells on k + 1-cells.

A simple debugging sanity check (necessary but not sufficient) is to
compute consecutive products: d0 followed by d1 must be a matrix
of zeros; d1 followed by d2 must similarly give a zero matrix. This
reflects the fact that the boundary of any boundary is the empty set.
It also corresponds to the calculus fact that curl of grad is zero as is
divergence of curl (see [Desbrun et al. 2006]).

Hodge Star The second operator we need will allow us to transfer
quantities back and forth between the primal and dual mesh. We can
project a primal k-form to a conceptually-equivalent dual (3− k)-
form with the Hodge star. We will denote ?0 (resp., ?1, ?2, ?3)
the Hodge star taking a 0-form (resp., 1-form, 2-form, and 3-form)
to a dual 3-form (resp., dual 2-form, dual 1-form, dual 0-form).
In this chaper we will use what is known as the diagonal Hodge
star [Bossavit 1998]. This operator simply scales whatever quantity
that is stored on mesh cells by the volumes of the corresponding
dual and primal cells: let vol(.) denote the volume of a cell (i.e.,
1 for vertices, length for edges, area for triangles, and volume for
tets), then

(?k)ii = vol(σ̃i)/ vol(σi)

where σi is any primal k-simplex, and σ̃i is its dual. These lin-
ear operators, describing the local metric, are diagonal and can be
stored as vectors. Conveniently, the inverse matrices going from
dual to primal quantities are trivial to compute for this diagonal
Hodge star.

Overloading Operators Note that both the dk and the ?k opera-
tors are typed: the subscript k is implicitly determined by the di-
mension of the argument. For example, the velocity field u is a
2-form stored as a vector U of cardinality |F |. Consequently the
expression dU implies use of the |T | × |F |-sized matrix d2. In the
implementation this is accomplished with operator overloading (in
the sense of C++). We will take advantage of this from now on and
drop the dimension subscripts.

3.3 Offline Matrix Setup

With these overloads of d and ? in place, we can now set up the only
two matrices (C and L) that will be used during simulation. They
respectively represent the discrete analogs of the curl and Laplace
operators [Desbrun et al. 2006].

Curl Since we store fluxes on faces and gather them in a vector
U , the circulation of the vector field u can be derived as values on
dual edges through ?U . Vorticity, typically a 2-form in fluid me-
chanics [Marsden and Wenstein 1983], is easily computed by then
summing this circulation along the dual edges that form the bound-
ary of a dual face. In other words, ωωω = ∇ × u becomes, in terms
of our discrete operators, simply Ω = dT ? U . We therefore cre-
ate a matrix C offline as dT ?, i.e., the composition of an incidence
matrix with a diagonal matrix.

Laplacian The last matrix we need to define is the discrete Lapla-
cian. The discrete analog of ∆φ = (∇∇· −∇×∇×)φ = ωωω is
simply (?d?−1dT ?+dT ? d) Φ = Ω as explained in Appendix B.
This last matrix, a simple composition of incidence and diagonal
matrices, is precomputed and stored as L for later use.

4 Implementation
To facilitate a direct implementation of our integration scheme, we
provide pseudocode (Figure 6) along with implementation notes
which provide details for specific steps and how these relate to the
machinery developed in earlier sections.

//Load mesh and build incidence matrices
C ← dT ?
L← ?d?−1dT ?+dT ? d

//Time stepping h
loop

//Advect Vorticities
for each dual vertex (tet circumcenter) ci

ĉi ← PathTraceBackwards(ci);
vi ← InterpolateVelocityField(ĉi);

for each dual face f
Ωf ← 0
for each dual edge (i, j) on the boundary of f
Ωf ← Ωf + 1

2 (vi + vj) · (ĉi − ĉj);

//Add forces
Ω← Ω + h C F

//Add diffusion for Navier-Stockes
Ψ← SolveCG( (? − ν h L)Ψ = Ω );
Ω← ? Ψ

//Convert vorticities back to fluxes
Φ← SolveCG( L Φ = Ω );
U ← dΦ;

Figure 6: Pseudocode of our fluid motion integrator.
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4.1 External Body Forces
The use of external body forces, like buoyancy, gravity, or stirring,
is common practice to create interesting motions. Incorporating
external forces into Eq. (4) is straightforward, resulting in:

∂u

∂t
+ u · ∇u = −∇p+ ν∆u+ f .

Again, taking the curl of this equation allows us to recast this equa-
tion in terms of vorticity:

∂ωωω

∂t
+ Luωωω = ν∆ωωω +∇× f . (6)

Thus, we note that an external force influences the vorticity only
through the force’s curl (the ∇ · f term is compensated for by the
pressure term keeping the fluid divergence-free). Thus, if we ex-
press our forces through the vector F of their resulting fluxes in
each face, we can directly add the forces to the domain by incre-
menting Ω by the circulation of F over the time step h, i.e.:

Ω← Ω+ h C F.

4.2 Adding Diffusion
If we desire to simulate a viscous fluid, we must add the diffusion
term present in Eq. (5). Note that previous methods were some-
times omitting this term because their numerical dissipation was
already creating (uncontrolled) diffusion. In our case, however, this
diffusion needs to be properly handled if viscosity is desired. This
is easily done through an unconditionally-stable implicit integra-
tion as done in Stable Fluids (i.e., we also use a fractional step ap-
proach). Using the discrete Laplacian in Eq. (8) and the current
vorticity Ω, we simply solve for the diffused vorticity Ω′ using the
following linear system:

(?− νhL) ?−1 Ω′ = Ω.

4.3 Interpolation of Velocity
In order to perform the backtracking of dual vertices we must first
define a velocity field over the entire domain using the data we have
on primal faces (fluxes). This can be done by computing a unique
velocity vector for each dual vertex and then using barycentric in-
terpolation of these vectors over each dual Voronoi cell [Warren
et al. 2004], defining a continuous velocity field over the entire do-
main. This velocity field can be used to backtrack dual vertices as
well as transport particles or dyes (e.g., for visualization purposes)
with standard methods.

To see that such a vector, one for each dual vertex, is well defined
consider the following argument. The flux on a face corresponds
under duality (via the Hodge star) to a circulation along the dual
edge of this face. Now, there is a linear relation between fluxes per
tet due to the incompressibility condition (fluxes must sum to zero).
This translates directly to a linear condition on the four circulations
at each tet too. Thus, there is a unique vector (with three compo-
nents) at the dual vertex whose projection along the dual edges is
consistent with the observed circulations.

Relation to k-form Basis Functions The standard method to in-
terpolate k-form data in a piecewise linear fashion over simplicial
complexes is based on Whitney forms [Bossavit 1998]. In the case
of primal 2-forms (fluxes) this results in a piecewise constant (per
tet) velocity field. Our argument above, using a Voronoi cell based
generalized barycentric interpolation of dual 1-forms (circulation),
in fact extends the Whitney form machinery to the dual setting.

This is a novel contribution which may be useful in other computa-
tional applications of discrete forms. We note that the generalized
barycentric coordinates have linear accuracy [Warren et al. 2004],
an important requirement in many settings.

Figure 7: Bunny Snow Globe: the snow in the globe is advected by the inner
fluid, initially stirred by a vortex to simulate a spin of the globe.

4.4 Handling Boundaries

The algorithm as described above does not constrain the bound-
aries, thus achieving “open” boundary conditions. No-transfer
boundary conditions are easily imposed by setting the fluxes
through the boundary triangles to zero. Non-zero flux boundary
conditions (i.e., forced fluxes through the boundary as in the case of
Fig. 8) are more subtle. First, remark that all these boundary fluxes
must sum to zero; otherwise, we would have little chance of getting
a divergence-free fluid in the domain. Since the total divergence
is zero, there exists a harmonic velocity field satisfying exactly
these conditions. This is a consequence of the Helmholtz-Hodge
decomposition theorem with normal boundary conditions [Chorin
and Marsden 1979]. Thus, this harmonic part h can be computed
once and for all through a Poisson equation using the same setup as
described in Appendix B. This precomputed velocity field allows us
to deal very elegantly with these boundary conditions: we simply
perform the same algorithm as we described by setting all boundary
conditions to zero (with the exception of backtracking which takes
the precomputed velocity into account), and reinject the harmonic
part at the end of each time step (i.e., add h to the current velocity
field).

Viscous Fluids near Boundaries The Voronoi cells at the bound-
aries are slightly different from the usual, interior ones, since
boundary vertices do not have a full 1-ring of tets. In the case of NS
equations, this has no significant consequence: we set the velocity
on the boundary to zero, resulting also in a zero circulation on the
dual edges on the boundary. The rest of the algorithm can be used
as is.

Inviscid Fluids near Boundaries For Euler equations, however,
the tangential velocity at the boundary is not explicitly stored any-
where. Consequently, the boundary Voronoi faces need an addi-
tional variable to remedy this lack of information. We store in these
dual faces the current integral vorticity. From this additional infor-
mation given at time t = 0, we can deduce at each later time step
the missing circulation on the boundary: since the circulation over
the inside dual edges is known, and since the total integral must
sum to the vorticity (Stokes’ theorem), a simple substraction is all
that is needed to update this missing circulation.

4.5 Handling Arbitrary Topology

Although the problem of arbitrary domain topology (e.g., when the
first Betti number is not zero) is rarely discussed in CFD or in our
field, it is important nonetheless. In the absence of external forces,
the circulation along each loop (of winding number 1) around a tun-
nel is constant in time. So once again, we precalculate a constant
harmonic field based on the initial circulation around each tunnel,
and simply add it to the current velocity field for advection pur-
poses. This procedure serves two purposes: first, notice that we
now automatically enforce the discrete equivalent of Kelvin’s the-
orem on any (shrinkable or non-shrinkable) loop; second, arbitrary
topologies are accurately handled very efficiently.
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Figure 8: Obstacle Course: in the usual experiment of a flow passing around
a disk, the viscosity as well as the velocity can significantly affect the flow
appearance; (left) our simulation results for increasing viscosity and same
left boundary flux; (right) the vorticity magnitude (shown in false colors)
of the same frame. Notice how the usual irrotational flow is obtained (top)
for zero viscosity, while the von Karman vortex street appears as viscosity
is introduced.

5 Results and Discussion
We have tested our method on some of the usual “obstacle courses”
in CFD. We start with the widely studied example of a flow past
a disk (see Fig. 9). Starting with zero vorticity, it is well known
that in the case of an inviscid fluid, the flow remains irrotational
for all time. By construction, our method does respect this physical
behavior since circulation is preserved for Euler equations. We then
increase the viscosity of the fluid incrementally, and observe the
formation of a vortex wake behind the obstacle, in agreement with
physical experiments. As evidenced by the vorticity plots, vortices
are shed from the boundary layer as a result of the adherence of the
fluid to the obstacle, thanks to our proper treatment of the boundary
conditions.

The behavior of vortex interactions observed in existing ex-
perimental results was compared to numerical results based
on our novel model and those obtained from the semi-
Lagrangian advection method. It is known from theory
that two like-signed vortices with a finite vorticity core will
merge when their distance of separation is smaller than some
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critical value. This behavior
is captured by the experimental
data and shown in the first series
of snapshots of Fig. 9. As the
next row of snapshots indicates,
the numerical results that our
model generated present strik-
ing similarities to the experi-
mental data. In the last row, we see that a traditional semi-
Lagrangian advection followed by re-projection misses most of the
fine structures of this phenomenon. This can be attributed to the
loss of total integral vorticity as evidenced in this inset; in compar-
ison our technique preserves this integral exactly.

We have also considered the flow on curved surfaces in 3D with
complex topology, as depicted in Fig. 10. We were able to easily
extend our implementation of two-dimensional flows to this curved
case thanks to the intrinsic nature of our approach.

We consider a smoke cloud surrounded by air, filling the body of a
bunny as an example of flow in a domain with complex boundary.
The buoyancy drives the air flow which, in turn, advects the smoke
cloud in the three-dimensional domain bounded by the bunny mesh
as shown in Fig. 1. In the last simulation, we show a snow globe
with a bunny inside (see Fig. 7). We emulate the flow due to an
initial spin of the globe using a swirl described as a vorticity field.

(b)

(c)
2.0s 9.1s 13.7s

2.0s 9.1s 13.7s

(a)

Figure 9: Two Merging Vortices: discrete fluid simulations are compared
with a real life experiment (courtesy of Dr. Trieling, Eindhoven Univer-
sity; see http://www.fluid.tue.nl/WDY/vort/index.html)
where two vortices (colored in red and green) merge slowly due to their
interaction (a); while our method faithfully captures the merging phenom-
enon (b), a traditional semi-lagrangian scheme does not capture the correct
motion because of vorticity damping (c).

The snow particles are transported by the flow as they fall down
under the effect of gravity. Both examples took less than half a
second per frame to compute, exemplifying the advantage of using
tet meshes to resolve fine boundaries.

Figure 10: Weather System on Planet Funky: the intrinsic nature of the
variables used in our algorithm makes it amenable to the simulation of flows
on arbitrary curved surfaces.

6 Conclusion
In this chapter, we have introduced a novel theoretical approach to
fluid dynamics, along with its practical implementation and vari-
ous simulation results. We have carefully discretized the physics
of flows to respect the most fundamental geometric structures that
characterize their behavior. Among the several specific benefits that
we demonstrated, the most important is the circulation preservation
property of the integration scheme, as evidenced by our numerical
examples. The discrete quantities we used are intrinsic, allowing
us to go to curved manifolds with no additional complication. Fi-
nally, the machinery employed in our approach can be used on any
simplicial complex. However, the same methodology also applies
directly to more general spatial partitionings, and in particular, to
regular grids and hybrid meshes [Feldman et al. 2005]—rendering
our approach widely applicable to existing fluid simulators.

For future work, a rigorous comparison of the current method with
standard approaches should be undertaken. Using Bjerknes’ circu-
lation theorem for compressible flows may also be an interesting
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avenue. Additionally, we limited ourselves to the investigation of
our scheme without focusing on the separate issue of order of ac-
curacy. Coming up with an integration scheme that is higher-order
accurate will be the object of further investigation, as it requires
a better (denser) Hodge star. Finally, we note that our geometric
approach bears interesting similarities with the work of Chang et
al. [2002], in which they propose a purely algebraic approach to
remedy the shortcomings of the traditional fractional step approach.
Using their numerical analysis on our approach may provide a sim-
ple way to study the accuracy of our scheme.
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A Discrete Exterior Derivative
A thorough explanation of the discrete exterior derivative of dis-
crete forms is out of the scope of this chapter, and we refer the
reader to existing tutorials contained in these course notes [Des-
brun et al. 2006]. However, the reader should be aware that this
operator is simply implemented via the use of incidence matrices.
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Indeed, a key ingredient to defining the discrete version of the ex-
terior derivative d is Stokes’ theorem:

∫

σ

dα =

∫

∂σ

α,

where σ denotes a (k+ 1)-cell and α is a k-form. Stokes’ theorem
states that the integral of dα (a (k + 1)-form) over a (k + 1)-cell
equals the integral of the k-form α over the boundary of the (k+1)-
cell (i.e., a k-cell). Stokes’ theorem can thus be used as a way
to define the d operator in terms of the boundary operator ∂. Or,
said differently, once we have the boundary operator, the operator
d follows immediately if we wish Stokes’ theorem to hold on the
simplicial complex.

To use a very simple example, consider a 0-form f , i.e., a function
giving values at vertices. With that, df is a 1-form which can be
integrated along an edge (say with end points denoted a and b) and
Stokes’ theorem states the well known fact:

∫

[a,b]

df = f(b)− f(a).

The right hand side is simply the evaluation of the 0-form f on
the boundary of the edge, i.e., its endpoints (with appropriate signs
indicating the orientation of the edge). Actually, one can define a
hierarchy of these operators that mimic the operators given in the
continuous setting (up to an application of the Hodge star) by the
gradient (∇), curl (∇×), and divergence (∇·), namely,

• d0: maps 0-forms to 1-forms and corresponds to the Gradient;
• d1: maps 1-forms (values on edges) to 2-forms (values on

faces). The value on a given face is simply the sum (by linearity
of the integral) of the 1-form values on the boundary (edges) of
the face with the signs chosen according to the local orientation.
d1 corresponds to the Curl;

• d2: maps 2-forms to 3-forms and corresponds to the Diver-
gence.

Since the boundary of any mesh element can be directly read from
the incidence matrices of the mesh, the exterior derivative is trivial
to implement once the mesh is known as it depends only on its
connectivity [Elcott and Schröder 2006].

B Recovery of Velocity
We have seen in Section 4 how the vorticity ω can be derived di-
rectly from the set of all face fluxes as dT ? U = ω. However,
during the simulation, we will also need to recover flux from vortic-
ity. For this we employ the Helmholtz-Hodge decomposition the-
orem, stating that any vector field u can be decomposed into three
components (given appropriate boundary conditions)

u = ∇× φ+∇ψψψ + h.

When represented in terms of discrete forms this reads as:

U = dΦ+ ?−1dT ?Ψ+H (7)

For the case of incompressible fluids (i.e., with zero divergence),
two of the three components are sufficient to describe the velocity
field: the curl of a vector potential and a harmonic field. To see this
apply d to both sides of Eq. 7:

dU = 0 = ddΦ+ d ?−1 dT ?Ψ+ dH.

Since dd = 0 and d of a harmonic form always vanishes, we find
that d ?−1 dT ? Ψ = 0 to begin with. Since Ψ is a 3-form d ?−1

dT ?Ψ = ∆Ψ = 0, i.e., Ψ is harmonic which implies in particular
that ?−1dT ?Ψ = 0, proving our claim that

U = dΦ+H.

If the topology of the domain is trivial, we can furthermore ignore
the harmonic part H (we discuss a full treatment of arbitrary topol-
ogy in Section 4.5), leaving us with U = dΦ.

Since our algorithm computes an updated Ω which is related to U
as dT ? U , we need to find a solution to

Ω = dT ? dΦ,

whereΩ is the known quantity, and dΦ the unknown. Unfortunately
the kernel of dT ?d is not empty so we can not determineΦ directly
from this equation. To pick a unique solution for Φ, we require
additionally that dT ? Φ = 0. By doing so we pick a particular
solution from the kernel of dT . But if dT ? Φ = 0 then certainly
(?d?−1dT ?)Φ = 0 and we can add it to our equation forΩ arriving
at

Ω = (dT ? d+ ?d ?−1 dT ?)Φ. (8)

This latter equation is simply a Poisson equation for Φ since

?−1Ω = ∆Φ

which has a unique solution. Let U = dΦ, and we have recovered
U as desired.

The fact that Eq. 8 is indeed a Poisson problem follows from the
definition of the Laplacian∆ in differential calculus as d ?−1 dT ?
+ ?−1 dT ? d. In the language of vector calculus this translates to
∆φ = (∇∇·−∇×∇×)φ = ∇×u. Notice that the left-side matrix
(that we will denote L) is symmetric and sparse, thus ideally suited
for fast numerical solvers. Our linear operators (and, in particular,
the discrete Laplacian) differ from another discrete Poisson setup
on simplicial complexes proposed in [Tong et al. 2003]: the ones
we use have smaller support, which results in sparser and better
conditioned linear systems [Bossavit 1998]—an attractive feature
in the context of numerical simulation.
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Abstract
The discrete Laplace-Beltrami operator plays a prominent role in
many Digital Geometry Processing applications ranging from de-
noising to parameterization, editing, and physical simulation. The
standard discretization uses the cotangents of the angles in the im-
mersed mesh which leads to a variety of numerical problems. We
advocate the use of the intrinsic Laplace-Beltrami operator. It sat-
isfies a local maximum principle, guaranteeing, e.g., that no flipped
triangles can occur in parameterizations. It also leads to better con-
ditioned linear systems. The intrinsic Laplace-Beltrami operator is
based on an intrinsic Delaunay triangulation of the surface. We
detail an incremental algorithm to construct such triangulations to-
gether with an overlay structure which captures the relationship be-
tween the extrinsic and intrinsic triangulations. Using a variety of
example meshes we demonstrate the numerical benefits of the in-
trinsic Laplace-Beltrami operator.

1 Introduction
Delaunay triangulations of domains in R2 play an important role
in many numerical computing applications because of the quality
guarantees they make, such as: among all triangulations of the con-
vex hull of a set of points in the plane the Delaunay triangulation
maximizes the minimum angle. Many error estimators in finite el-
ement approaches to the solution of partial differential equations,
e.g., are directly related to the minimum angle and are more fa-
vorable if this minimum is maximized (for an extensive discussion
see [Shewchuk 2002]). The construction of such triangulations for
domains in R2 is now standard textbook material and a basic in-
gredient in many meshing algorithms. For immersed surfaces in
R3, which are given as simplicial 2-manifold meshes (possibly with
boundary), the picture is not nearly as clear.

Algorithms which numerically manipulate such meshes are of great
importance in Digital Geometry Processing applications. Examples
include surface denoising [Desbrun et al. 1999], thin-shell simula-
tion [Grinspun et al. 2003], construction of discrete minimal sur-
faces [Pinkall and Polthier 1993], surface parameterization [Des-
brun et al. 2002; Lévy et al. 2002], computation of discrete con-
formal structures [Gu and Yau 2003; Mercat 2001], and geometric
modeling [Botsch and Kobbelt 2004], among many others. Similar
to the setting of domains in R2 one also finds that meshes which
satisfy an intrinsic Delaunay criterion give rise to better numerical
behavior in all the above geometry processing examples.

A classic algorithm to convert a given planar triangulation into a
Delaunay triangulation involves edge flipping, whereby an edge
which violates the local Delaunay criterion is flipped until no such
edge remains. In the same vein, one can construct an intrinsic De-
launay triangulation (see Figure 1) of a simplicial surface in R3 by
performing intrinsic edge flips (see Figure 2). Importantly, because
the edge flips are intrinsic the shape of the original embedded mesh
does not change. This notion of intrinsic Delaunay triangulation
(iDT) takes into account only the intrinsic geometry of the mesh,
i.e., the mesh is considered as an abstract surface with a metric that
is locally Euclidean except at isolated points (the vertices of the
mesh) where it has cone-like singularities. The relevant data read
off from the input mesh are the combinatorics of its edge graph
as well as the length of each edge. With this data alone one may

Figure 1: Left: carrier of the (cat head) surface as defined by the
original embedded mesh. Right: the intrinsic Delaunay triangu-
lation of the same carrier. Delaunay edges which appear in the
original triangulation are shown in white. Some of the original
edges are not present anymore (these are shown in black). In their
stead we see red edges which appear as the result of intrinsic flip-
ping. Note that the red edges are straight, i.e., geodesic, within the
original surface.

now ask of each interior edge whether it satisfies the local Delau-
nay condition since the associated predicate can be based solely on
the observed edge lengths and local combinatorics (and thus en-
tirely on intrinsic data). The intrinsic flip algorithm proceeds as
follows: While there is an edge that violates the local Delaunay
criterion, perform a combinatorial flip on it and update its length.
Note that this procedure does not change the intrinsic geometry of
the input mesh at all. One may visualize the iDT of such a mesh
as a graph of geodesic edges drawn on the original simplicial sur-
face, as shown in Figure 1. (Here geodesic denotes a straightest
edge, not necessarily a shortest edge [Polthier and Schmies 2002].)
It is not hard to see that the intrinsic flip algorithm terminates, thus
producing an intrinsic triangulation with all interior edges satisfy-
ing the local Delaunay criterion [Indermitte et al. 2001]. Recently,
Bobenko and Springborn [2005] have shown that as in the planar
case the iDT is essentially unique and satisfies a global empty cir-
cumcircle property. A technical difficulty that one encounters when
dealing with iDTs is that they are not necessarily regular triangu-
lations. A triangulation is called regular if each triangle is incident
with three different edges and three different vertices. It is called
strongly regular if it is regular and the intersection of two triangles
is either empty or one edge or one vertex, and if the intersection of
two edges is either empty or one vertex. The usual definition of the
term triangulation implies strong regularity. This is too narrow for
our purposes. For example, edges of an iDT may form loops (see
Figure 3). Therefore, we do not require triangulations to be regular.

With an iDT in hand one may define an intrinsic Laplace Beltrami
(iLB) operator [Bobenko and Springborn 2005]. In contrast to the
extrinsic Laplace Beltrami (eLB) operator, which is based on the
original triangulation, the iLB operator has many favorable numer-
ical properties. For example, in the construction of discrete har-
monic parameterizations one can guarantee that the computed pa-
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Figure 2: Given a pair of adjacent triangles in R3 their intrinsic
geometry can be visualized by isometrically mapping them to the
plane. If the edge is not Delaunay it is flipped inside the original
surface (original edges: solid; flipped edge: dotted). The flipped
edge is a geodesic segment in this surface and the surface remains
unchanged.

rameterization are free of flipped triangles because a discrete maxi-
mum principle holds for the iLB while this is generally not the case
for the eLB. (These issues with the eLB have been the cause for
many proposals to numerically “fix” the eLB.) More generally, the
iLB is numerically better conditioned than the eLB leading to more
efficient applications in particular when higher powers of the iLB
are required. The iDT is also useful in other settings. For example,
Circle Patterns [Kharevych et al. 2006], used in the construction of
discrete conformal maps, require the intrinsic Delaunay property of
each edge. In that setting the use of iDTs leads to results with far
lower quasi-conformal distortion (see Figure 10).

Contributions In this paper we describe an algorithm for the con-
struction of iDTs for immersed simplicial 2-manifold meshes (pos-
sibly with boundary) of arbitrary topology. First, we detail the basic
intrinsic edge flipping algorithm which requires little more than a
standard edge based data structure. Then we describe an extension
of this flip algorithm that maintains a data structure encoding the
overlay of the original triangulation and the current triangulation
with flipped edges. This is necessary if one wants to interpolate
some data that is given on vertices with respect to the original tri-
angulation and other data with respect to the iDT. For example, the
3D vertex coordinates should be interpolated with respect to the
original mesh, but texture coordinates which were calculated us-
ing the iLB operator should be interpolated with respect to the iDT.
The overlay data structure is maintained using only combinatorial
predicates.

It is well known that edge flipping can have a long running time
(edge flipping in planar triangulations, e.g., takes Θ(n2) time). Em-
pirically we find the algorithm to run quite fast however, and its
runtime to be easily dominated by subsequent numerical computing
tasks. We present statistics for a variety of input meshes and show,
among other observations, that the condition number of the asso-
ciated Laplace-Beltrami operator can be noticeably reduced when
using the iDT. Coupled with the guarantee of satisfying a discrete
maximum principle, this results in more robust and efficient numer-
ical behavior for a host of DGP applications.

2 Intrinsic Delaunay Triangulations

We begin this section with a brief recall of the relevant intrinsic
geometry of piecewise linearly immersed simplicial meshes, before
describing the edge flipping algorithm without (Section 2.2) and
with (Section 2.3) overlay maintenance.

2.1 Piecewise Flat Surfaces

A piecewise flat surface (PF surface) is a 2-dimensional manifold
equipped with a metric such that every interior point of the manifold
has a neighborhood that is isometric to a neighborhood in the plane,
except for a number of isolated points, the cone points. Each cone
point has a neighborhood that is isometric to a neighborhood of the
apex of a Euclidean cone. Small circles of radius r around a cone
point have length αr with α 6= 2π . The number α is the cone angle
of the cone point (which may be smaller or larger than 2π). Its

Gaussian curvature is 2π−α . We always assume that the boundary
of a PF surface, if present, is piecewise geodesic.

A concrete way to construct PF surfaces is through gluing poly-
gons: take a set of planar polygons together with a partial isometric
edge pairing, i.e., a set of pairs of different polygon edges such that
the edges in each pair have the same length and every edge is con-
tained in at most one pair. Gluing the polygons along the paired
edges one obtains a PF surface. The unpaired edges make up the
boundary. We emphasize that the notion of a PF surface belongs
to the intrinsic geometry of surfaces: here we are not interested in
whether or how a PF surface can be isometrically embedded in R3.
When we speak of gluing polygons together, we mean the abstract
construction of identifying corresponding points along the edges.

A possible representation which describes a triangulation of a PF
surface consists of a graph structure to describe an abstract surface
triangulation (which need not be regular) together with a labeling
of the edges by positive numbers signifying edge length. The only
constraint on the edge lengths is that they must satisfy the triangle
inequalities for each face. For if that is the case, one can construct
all the triangles and glue them to obtain a PF surface. All cone
points are vertices of the triangulation. Such a triangulation is a
Delaunay triangulation of a PF surface if for each interior edge
the local Delaunay criterion is satisfied: the sum of the opposite
angles in the adjacent triangles is less than π . For more on Delaunay
triangulations of PF surfaces see [Bobenko and Springborn 2005]
and references therein.

Note: Since a Delaunay triangulation of a PF surface is not nec-
essarily regular, it is essential that the data structure which is used
to represent the abstract surface triangulation can represent non-
regular triangulations. For example, winged-edge, half-edge, or
quad-edge data structures may be used. A data structure based on
triangle-vertex incidences is not suited.

2.2 Intrinsic Delaunay Flipping Algorithm

Any 3D surface mesh with flat faces is intrinsically a PF surface.
In general, every vertex of such a mesh is a cone vertex. Suppose
an immersed surface (in R3) is given in the form of a 2-manifold
triangle mesh. More precisely, we have a 2-manifold complex K =
(V,E,T ) of vertices, edges, and triangles together with the point
positions P(vi) = pi ∈ R3 (one for each vertex vi ∈ V ). Piecewise
linear (PL) interpolation over each triangle then defines the carrier
of the surface. For this surface we seek an iDT. This triangulation
depends only on the complex K and metric data associated with
each edge ei j ∈ E. This metric data is the Euclidean length L(ei j) =
li j = ‖pi − p j‖ of each embedded edge ei j ∈ E. The pair (K,L)
constitutes the input to the iDT algorithm which returns a complex
with corresponding intrinsic lengths (K̃, L̃). Note that once L is
computed P will play no further role in the algorithm.

For each edge in Ẽ we will also report all edges in E crossed by it (if
any). Note that an edge in Ẽ may cross a given edge in E multiple
times.

While K is generally strongly regular, we do not require regularity.
In fact, the output of the algorithm will in general not be regular
(see Figure 3).

The transformation of (K,L) into (K̃, L̃) is straightforward and
based on the classic edge flipping algorithm:
Require: (K,L)
Ensure: (K̃, L̃) is intrinsic Delaunay
∀e ∈ E : Mark(e)
Stack s← E
while !Empty(s) do

ei j← Pop(s) and Unmark(ei j)
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identified edge

unfold

valence 3 vertex valence 2 valence 1

cut here to
unfold flip flip result

Figure 3: Even if the input mesh is strongly regular it is quite easy
to arrive at non-regular configurations through intrinsic edge flip-
ping. Here a vertex of valence 3 is reduced to a valence 1 vertex
through two intrinsic flips (original edges: black; flipped edges:
white).

if !Delaunay(ei j) then
ekl ← Flip(ei j) and compute lkl
for all e ∈ {ek j,e jl ,eli,eik} do

if !Mark(e) then
Mark(e) and Push(s,e)

end if
end for

end if
end while
return (K̃, L̃)← (K,L)

The fact that this algorithm terminates is shown in [Indermitte et al.
2001]. The proof is essentially the same as for planar triangula-
tions. Infinite loops cannot occur because a suitable function on
the set of triangulations decreases with every edge flip. In the case
of PF surfaces an added complication results from the fact that the
number of triangulations on a fixed vertex set may be infinite. So
an additional requirement for a “suitable function” is that it is un-
bounded on any infinite set of triangulations. That the output (K̃, L̃)
is globally intrinsic Delaunay, i.e., that the local Delaunay property
implies a global empty circumcircle property, requires some more
work [Bobenko and Springborn 2005].

To implement the algorithm two essential functions are required,
(1) evaluation of the Delaunay(ei j) predicate, and (2) computation
of the new edge length lkl if edge ei j is flipped. Both require only
the edge lengths of the incident triangle(s) ti jk and tli j. Many im-
plementations are possible. Here we describe one which uses only
the four basic arithmetic operations and square roots, in particular,
no inverse trigonometic functions. It also has the added benefit that
it computes the coefficients of the Laplace-Beltrami operator (see
Section 3).

(1) First, compute the tangents of the half angles of the triangles
using the half-angle theorem: If a, b, and c are the side lengths of a
triangle, and α is the angle opposite the side with length a, then

tan
α

2
=

√
(a−b+ c)(a+b− c)

(a+b+ c)(−a+b+ c)
.

From these half-angle tangents one may compute the cotan weights
using the identity

cotα =
1− tan2 α

2
2tan α

2
.

For a boundary edge, Delaunay(ei j) returns true. For an interior
edge, Delaunay(ei j) returns true if the cotan weight wi j = cotαk

i j +
cotα l

i j on the edge ei j is nonnegative, false otherwise. (Here αk
i j

denotes the angle opposite edge ei j in triangle ti jk.)

(2) We need to compute the other diagonal f in a quadrilateral with
known sides a, b, c, d and diagonal e as shown in Figure 4. Again

a

b c

d
e

f

α δ

Figure 4: We need to compute the length of f from the given lengths
of a, b, c, d, and e.

we base our computation on half-angle tangents tan α

2 and tan δ

2 that
we obtain using the half angle theorem. From these we compute

tan
α +δ

2
=

tan α

2 + tan δ

2

1− tan α

2 tan δ

2

,

then

cos(α +δ ) =
1− tan2 α+δ

2

1+ tan2 α+δ

2

,

and finally

f =
√

b2 + c2−2cos(α +δ ) .

The correct execution of the algorithm depends both on the correct
evaluation of the Delaunay predicate as well as on the correct com-
putation of the lengths of flipped edges since later flips can depend
on earlier flips in this manner. This is quite different from stan-
dard flipping algorithms which work with an embedding. There the
data (vertex positions) upon which the predicate depends does not
change as the algorithm proceeds. In our current implementation
we have used only double precision floating point computations
and not observed any ill effects in our examples, though correct-
ness cannot be assured in this setting.

2.3 Incremental Overlay

The information contained in (K̃, L̃) is sufficient to assemble the
iLB operator and perform computations with it. In some applica-
tions the resulting values (at vertices) are to be interpolated across
the carrier surface. Recall that the carrier surface is defined through
PL interpolation with respect to the input triangulation. However,
the data arising from a computation using the iLB operator is most
naturally PL interpolated with respect to the iDT. (For a quantita-
tive comparison of the resulting distortion errors see Section 3 and
Figure 9.) To be able to perform both types of interpolation simul-
taneously, as is required in texture mapping, for example, one needs
a graph structure representing the overlay of both triangulations K
and K̃. We describe an incremental algorithm which maintains this
overlay during flipping.

We maintain a graph structure (e.g., a half-edge data structure)
which describes, at each stage of the flip algorithm, the overlay
of the original triangulation and the current one. The vertices of the
original and of the current triangulation (they have the same vertex
set) are also vertices of the overlay graph. Additionally the overlay
graph contains vertices corresponding to points where an edge of
the original triangulation is crossed by an edge of the current trian-
gulation. These we will not call vertices but crossings. The overlay
graph structure distinguishes between vertices and crossings so that
we can tell them apart. The edges of the overlay graph we will call
segments because they are segments of edges of the original and
current triangulations. Each segment is labeled c, o, or oc: o if it
is part of an edge that belongs to the original triangulation but not
the current one (we will also call such an edge an o edge), c if it is
part of an edge that belongs to the current triangulation but not the
original one (a c edge), and oc if it is part of an edge that belongs to
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both the original and current triangulation (an oc edge). Note that
from this overlay graph structure one can reconstruct both the orig-
inal and the current triangulation. Edges labeled o (c) correspond
to sequences of more than one o (c) segment because an edge of
the current triangulation that does not belong to the original trian-
gulation must cross an original edge (and vice versa). A oc edge on
the other hand corresponds to a single oc segment, because such an
edge cannot cross any other edges. Each crossing has four adjacent
segments which are alternatingly labeled o and c.

Initially, the original triangulation is also the current one, so it is
also the overlay graph, with all edges being oc segments. Perform-
ing a flip now requires updates of the overlay graph. We will see
that this requires only combinatorial information. After the new
combinatorics are established, the segment lengths can be updated
independently (if desired).

Updating the Overlay Topology We illustrate this using the ex-
amples shown in Figure 5. First, consider the flip shown on the
left. The horizontal c edge (consisting of four segments) which is
to be flipped, is removed. This requires merging of pairs of o seg-
ments (previously crossed by the c edge) incident to c/o crossings.
This leaves us with a c quadrilateral (formed by the two triangles
incident on the edge) with five o segments on its interior. Inserting
the (vertical) flipped c edge will lead to some new crossings with
o segments. Importantly, we can tell which of these o segments
will be crossed and in what order: The o segments that are crossed
are those that are incident to the left as well as right boundary of
the quadrilateral. (In this accounting the top and bottom vertices
do not belong to either boundary.) This eliminates two of the five
segments from further consideration. The remaining segments are
incident to the boundaries in the same order as they are crossed by
the flipped c (vertical) edge. This is so because there are no vertices
in the interior of the quadrilateral and crossings cannot occur be-
tween o segments. So we know which o segments to split and how
to insert the flipped c edge. None of these considerations required
any coordinates or lengths.

oo

o
o
o
o

o

o o
o

o

o

o
o

o

o

o
o
o

o
c

cc

c

Figure 5: Maintaining the overlay topology. Left: the common
case when a c edge is flipped and remains c. Right: the special
cases when an oc edge is flipped, or, reversely, a c edge is flipped
onto an o edge. Each case also illustrates a variety of possible o/c
crossings.

The flip shown on the right of Figure 5 illustrates the special case
when an oc edge is flipped, or, vice versa, a c edge is flipped onto
an o edge. The procedure is the same as described above, except
that flipping a oc edge does not lead to its removal but rather only
to a label change (making it o). Reversely, if a c edge is flipped onto
an o edge, the result is an oc edge.

In either example, some or all of the four boundary edges of the
quadrilateral might be oc instead of c. Such edges do not contain
any crossings. The procedure remains the same. This concludes the
description of all possible cases.

Updating Lengths First note that during the algorithm, lengths of
segments are not required, only lengths of edges. If actual crossing
intersection points, e.g., in terms of segment lengths, are required,
one can find these by laying out the quadrilateral hinge of a given
edge. We may think of segment lengths as barycentric coordinates

with respect to their containing edge (and its length). Assuming
that all segment lengths are known before an edge flip, one can lay
out an isometric copy of the c quadrilateral in the plane and obtain
coordinates for the four vertices and all crossings of o segments
with the boundary. These can be used to obtain coordinates for the
new crossings of o edges with the flipped edge, and thus to calculate
the new segment lengths. The layout process must be able to cope
with identified edges/segments or vertices, since the triangulation is
in general not regular. In particular a given vertex in the mesh may
have multiple different (u,v) coordinates in the layout.

3 IDT in Applications
The discrete Laplace Beltrami operator is central in applica-
tions ranging from denoising/smoothing (intrinsic mean curva-
ture flow [Desbrun et al. 1999]), to editing (using the bi-Laplace-
Beltrami operator [Botsch and Kobbelt 2004]), texture mapping
(using a pair of discrete harmonic functions [Desbrun et al. 2002]),
and construction of discrete minimal surfaces [Pinkall and Polthier
1993], to give but a few references (see also the references in [Grin-
spun et al. 2005]). In all of these cases one needs to solve (se-
quences of) linear problems involving a system matrix ∆ with off-
diagonal entries

∆i j =−(cotα
k
i j + cotα

l
i j)

for edge ei j where αk
i j is the angle opposite to edge ei j in trian-

gle ti jk (and similarly for α l
i j). The diagonal ∆ii holds the negative

sum of the off-diagonal entries in that row. (We ignore here scal-
ing factors which arise in various applications.) ∆ is symmetric and
positive definite, given appropriate boundary conditions. These are
typically given as desired values (Dirichlet data) or cross boundary
derivatives (Neumann data). Non-Delaunay edges in the mesh give
rise to negative cotan weights, which leads to a loss of the local
(discrete) maximum principle. One symptom of this is the occur-
rance of flipped triangles when computing texture maps. This issue
is entirely avoided if we use the iLB operator, i.e., ∆i j depends on
the iDT. At vertices of valence 1 or 2 (which can occur in the iDT)
injectivity of a discrete conformal mapping is lost though, since the
single incident triangle to a vertex of valence 1 is collapsed to a
point while in the case of valence 2 the two incident triangles are
collapsed to a line. In effect the Jacobian of the mapping from the
surface to the texture plane can become singular, but its determi-
nant cannot become negative. While this induces (unavoidable) lo-
cal distortion it does not cause any problems in the texture mapping
stage itself.

The number of non-zero entries in the matrix is the same for both
eLB and iLB, thus having no impact on the operations count in a
single application of the matrix to a vector.

Table 1 gives some statistics of the edge flipping algorithm for a
number of representative meshes. Comparing the total number of
flips with the number of iDT edges which cross exactly two origi-
nal triangles (“simple”) we see that this simplest case is by far the
most common. The other extreme is the iDT edge consisting of the
most segments, i.e., crossing the longest (“lgst.”) chain of original
triangles. These are generally also short with the notable exception
of the Camel where the longest chain of segments is length 22. An
aggregate measure is the total number of crossings generated for
all iDT edges: Max Planck (7167), Bunny (2434), Camel (25043),
Horse (4027), and Feline (13317). Here the Camel stands out with
more than half as many crossings as original vertices. More typical
are cases such as Horse and Feline.

Figure 6 shows a histogram of coefficients for the iLB versus eLB
operator for the Hygeia model (other models have similar his-
tograms). Obviously there are no negative coefficients anymore,
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Model V flips simple lgst. κi/κe
Cat hd. 131 45 40 3 0.8114
Bny hd. 741 380 275 6 0.6139
Bty. Frk. 1042 560 364 12 0.1841
Hygeia 8268 4017 2861 6 0.1053
Planck 25445 6417 5584 5 0.7746
Bunny 34834 2365 2283 4 0.0758
Camel 40240 17074 12618 22 0.7218
Horse 48485 3581 3127 7 0.6734
Feline 49864 12178 10767 7 0.5746

Table 1: Statistics for some representative meshes. Number of:
vertices; edge flips; flipped edges crossing only two original trian-
gles; maximal number of segments in an iDT edge; and condition
number improvement as ratio for iLB and eLB). All runs were well
under 1 second on a 2GHz Athlon.

but we also see a noticeable decrease in the number of large coeffi-
cients.
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Figure 6: Histogram of coefficients in the eLB versus iLB operator
for the Hygeia model.

For numerical considerations the most relevant figure of merit is
the condition number of the Laplace-Beltrami operator, which we
evaluate by considering the ratio of iLB (κi) to eLB condition num-
ber (κe). Generally we find an improvement between 20% and
40%, due to the largest eigenvalue being decreased (as predicted
by theory [Rippa 1990]). Notable outliers are the “Beautiful Freak”
dataset [Desbrun et al. 2002], which was specifically engineered to
be challenging (80% improvement) and the Bunny (over 90% im-
provement).

The numerical improvements in the iLB operator over the eLB are
also noticeable in the quality of discrete harmonic parameteriza-
tions [Desbrun et al. 2002; Lévy et al. 2002; Mercat 2001; Gu and
Yau 2003]. In this case the overlay graph is required to properly in-
terpolate the induced texture mapping functions. Figure 7 shows the
original triangulation (left column) and iDT (right column) for the
“Beautiful Freak” dataset when mapped to the texture plane using
Dirichlet (disk) boundary conditions. The resulting checker board
pattern when mapped onto the surface is shown below. (Note that
because of the Dirichlet boundary conditions we do not expect the
resulting texture to be conformal.) The distortion in each triangle
can be visualized by plotting the ratio of largest to smallest singular
value of the Jacobian. In the case of conformal parameterizations
this ratio can be as low as unity. Figure 8 compares the results
for original triangulation (left column) and iDT (right column) with
Dirichlet (top) boundary conditions to the disk (see Figure 7) and

Figure 7: Original (left column) and iDT (right column) of the
Beautiful Freak dataset (Dirichlet boundary conditions). Texture
plane image and resulting checker board mapping onto the surface.

natural boundaries (bottom). As expected the distortion is overall
lower for natural boundaries, but even in that case there is still a
marked difference between original triangulation and iDT.

-   3

-   1

-   2

Figure 8: Comparison of distortion (ratio of larger to smaller sin-
gular value of the Jacobian) between original triangulation (left
column) and iDT (right column) for Dirichlet (top row) and natural
(bottom row) boundary conditions.

When the iLB operator is used to compute a discrete harmonic pa-
rameterization one can interpolate the resulting (u,v) parametric
assignments at the vertices with respect to the original triangulation
or with respect to the iDT. The latter requires the overlay graph. In
Figure 9 the distortion error between the two alternatives is visual-
ized. We can clearly see that the error is lower when the parameter-
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ization is interpolated with respect to the overlay graph, justifying
the extra expense of computing the overlay graph if the lowest pos-
sible distortion is to be achieved.

Figure 9: Comparison of the distortion error when using the iLB
operator to compute harmonic parameterizations (here with natu-
ral boundary conditions). On the left the parametric assignments at
vertices are interpolated with respect to the original triangulation
while on the right the iDT is used.

The lowering of distortion is also noticeable in other parameteri-
zation applications. Kharevych et al. [2006] used circle patterns
to compute discrete conformal mappings for embedded meshes.
Briefly, in this approach discrete conformal mappings for triangle
meshes (of arbitrary topology) are computed via triangle circum-
circles and the angles they make with one another at shared edges.
A requirement of the underlying theory is that all these angles be
in [0,π]. While this can be enforced through clipping illegal values
to the nearest legal value, a better approach is to change the com-
binatorics of the triangulation so that it is iDT. Figure 10 compares
the distortion for two datasets when using the original triangulation
(left column) and iDT (right column).

4 Conclusion
Given a triangle mesh annotated with lengths for every edge (as-
suming these lengths satisfy the triangle inequality) an intrinsic
Delaunay triangulation is well defined and can be found with the
help of a simple and low cost edge flipping algorithm. If explicit
representations of the iDT edge crossings are required, an overlay
graph can be incrementally maintained, using only combinatorial
considerations. For applications which require a discrete Laplace-
Beltrami operator (e.g., denoising, parameterization, editing, sim-
ulation), defining it over the iDT has numerical advantages from
improved condition numbers to lower error in the computations,
and a reduced need for special case handling.

Clearly an (embedded) mesh which is intrinsically Delaunay to be-
gin with is most desirable. It would be interesting to explore this as
a constraint in remeshing algorithms, be they for static, or dynam-
ically deforming, surfaces. Finally, we mention the challenge of
making the algorithm robust. While we have not experienced any
problems in our experiments, correct execution (and termination) of
the implementation of the algorithm will likely require more than
simple floating point arithmetic.
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Figure 10: Two examples (Hygeia, genus zero; cut camel with
free boundaries) comparing distortion for original triangulation
(left column) and iDT (right column). (Used with permission
from [Kharevych et al. 2006].)
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GRINSPUN, E., SCHRÖDER, P., AND DESBRUN, M., Eds. 2005.
Discrete Differential Geometry. Course Notes. ACM SIG-
GRAPH.

GU, X., AND YAU, S.-T. 2003. Global Conformal Surface Param-
eterization. In Symp. on Geom. Proc., 127–137.

INDERMITTE, C., LIEBLING, T. M., TROYANOV, M., AND
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Discrete Geometric Mechanics for Variational Time Integrators
Ari Stern Mathieu Desbrun
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Abstract

In this chapter, we present a geometric—instead of a traditional
numerical-analytic—approach to the problem of time integration.
Geometry at its most abstract is the study of symmetries and their
associated invariants. Variational approaches based on such notions
are commonly used in geometric modeling and discrete differen-
tial geometry. Here we will treat mechanics in a similar way. In-
deed, the very essence of a mechanical system is characterized by
its symmetries and invariants. Thus preserving these symmetries
and invariants (e.g., certain momenta) into the discrete computa-
tional setting is of paramount importance if one wants discrete time
integration to properly capture the underlying continuous motion.
Motivated by the well-known variational and geometric nature of
most dynamical systems, we review the use of discrete variational
principles as a way to derive robust, and accurate time integrators.

1 Introduction

Prediction is difficult, especially of the future.

—Mark Twain

Time Evolution of Dynamical Systems Time evolving phe-
nomena such as the swinging of a clock pendulum, the bouncing of
a soft ball on the floor, or even biological systems and stock market
indicators are often modeled (i.e., studied and understood) as dy-
namical systems. Mathematical models of the evolution in time of
these systems generally involve systems of differential equations.
Solving a physical system means figuring out how to move the sys-
tem forward in time from a set of initial conditions, allowing the
computation of, for instance, the trajectory of the soft ball (i.e., its
position as a function of time) thrown onto the floor. Although
this example can easily be solved analytically, direct solutions of
the differential equations governing a system are generally hard or
impossible—we need to resort to numerical techniques to find a
discrete temporal description of a motion. Consequently, there has
been a significant amount of research in applied mathematics on
how to deal with some of the most useful systems of equations,
leading to a plethora of numerical schemes with various proper-
ties, orders of accuracy, and levels of complexity of implementation
(see [Press et al. 1992] for a general overview).

Accurate vs. Qualitative Integrators While it is unavoidable
to make approximations in numerical algorithms (i.e., to differ from
the continuous equivalent), the matter becomes whether the numer-
ics can provide satisfactory results. The notion of satisfactory is,
however, objective-dependent. If simulation is used for the design
of a plane wing through a series of tests over a wide range of situa-
tions, qualitative reproduction of the wing behavior may be prefer-
able over absolute numerical accuracy. If, however, simulation is
used to find the proper launch parameters for a satellite to be put
at a particular orbit, accurate results are crucial. This apparent mis-
match in objectives has been, historically, aggravated by the cultural
gap existing between applied and theoretical communities. We will

show that in fact, one does not have to ask for either predictability
or accuracy: simple methods exist that guarantee good statistical
predictability by respecting the geometric properties of the exact
flow of the differential equations, while being also easily rendered
arbitrarily accurate.

Animation, or Simulation? In Computer Animation, time in-
tegrators are crucial computational tools at the core of most physics-
based animation techniques. Animating a rigid body for instance
uses the principles of classical mechanics, involving second or-
der differential equations. In their most rudimentary form, these
principles express the relationship between forces acting on the
body and its acceleration given by Newton’s laws of motion. From
these equations of motion, classical time integrators (such as fourth-
order Runge-Kutta, implicit Euler, and more recently the Newmark
scheme) have been methods of choice in practice [Parent 2001;
Hauth et al. 2003] to result in motions with good visual behavior—
arguably, the top priority in graphics. Nonetheless, allowing the
equations of motion to be slightly violated is commonly used to
better control the resulting animation [Barzel et al. 1996], as long
as it still looks visually plausible. In other words, local accuracy
can be tinkered with just as long as the motion is still “globally”
right.

Goals In this chapter, we provide an introduction to geometric
mechanics, first from a continuous, then from a discrete point of
view. Departing sharply from traditional numerical-analytic expo-
sitions, we point out how respecting the geometry of mechanics is
not only natural, but it provides simple and powerful foundations
for the design of robust time integrators. In particular, we will in-
troduce the notion of variational integrators as a class of solvers
specifically designed to preserve this underlying physical structure,
even for large time steps that would produce overdamped or diverg-
ing results with more traditional methods.

2 Geometric Approach to Mechanics

Dynamics as a Variational Problem Considering mechan-
ics from a variational point of view goes back to Euler, Lagrange
and Hamilton. The form of the variational principle most important
for continuous mechanics is due to Hamilton, and is often called
Hamilton’s principle or the least action principle: it states that a
dynamical system always finds an optimal course from one posi-
tion to another—or, as P.L. Moreau de Maupertuis put it, “Nature
is thrifty in all its actions”. A more formal definition will be pre-
sented in Section 4.1, but one consequence is that we can recast the
traditional way of thinking about an object accelerating in response
to applied forces into a geometric viewpoint. There, the path fol-
lowed by the object has optimal geometric properties—analog to
the notion of geodesics on curved surfaces. This point of view is
equivalent to Newton’s laws in the context of classical mechanics,
but is broad enough to encompass areas ranging to E&M and quan-
tum mechanics.
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Discrete Structure-Preserving Integrators Geometric in-
tegrators are a class of numerical time-stepping methods that ex-
ploit this geometric structure of mechanical systems [Hairer et al.
2002]. Of particular interest within this class, variational integra-
tors [Marsden and West 2001] discretize the variational formulation
of mechanics we mentioned above, providing a solution for most
ordinary and partial differential equations that arise in mechanics.
While the idea of discretizing variational formulations of mechan-
ics is standard for elliptic problems using Galerkin Finite Element
methods for instance, only recently has it been used to derive vari-
ational time-stepping algorithms for mechanical systems. This ap-
proach allows the construction of integrators with any order of ac-
curacy [West 2003; Lew 2003], and can handle constraints as well
as external forcing. Results have been shown to be equal or supe-
rior to all other types of integrators for simulations of a large range
of physical phenomena [Kane et al. 2000], making this discrete-
geometric framework both versatile and powerful.

Of particular interest in computer animation, the simplest varia-
tional integrator can be implemented by taking two consecutive po-
sitions q0 = q(t0) and q1 = q(t0+dt) of the system to compute the
next position q2 = q(t0 + 2dt). Repeating this process calculates
an entire discrete (in time) trajectory. In this chapter, we describe
the foundations necessary to derive such variational schemes based
on geometric arguments.

3 A Motivating Example: The Pendulum

Before we delve into the details of what variational integrators are,
let us first look at a simple example to exemplify how slight varia-
tions in the design of time integrators can result in widely different
behaviors.

3.1 Setup and Conventions

Consider a simple pendulum of mass m and length L, swinging
under the influence of the gravitational acceleration g. Let q(t)
represents the pendulum’s angle with the vertical at time t. As this
angle is the only degree of freedom for this simple example, we can
express the equations of motion for this system based solely on q
and its derivatives:

q̈ = − g
L
sin q, (1)

where we use the “dot” notation to represent derivatives with re-
spect to time, i.e.:

q̇ :=
dq

dt
, and q̈ :=

d2q

dt2
.

We can rewrite this equation as a system of two coupled first-order
equations in the variables q and v:

q̇ = v (2)

v̇ = − g
L
sin q (3)

If the initial conditions q(0) and q̇(0) are given, then we could theo-
retically solve this differential equation for q. Assume for a moment
that we don’t have access to the analytical solution to this problem
(in fact, as in many cases, no such solution is known). We can only
hope to approximate the solution using an integrator. To achieve
this goal, we first discretize the problem. That is, we break up time
intoN equal steps of length h, so that we no longer have a continu-
ous notion of time, but have instead a discrete set of times tk = kh.
Then, finding an approximation to the differential equation on our
new discrete time domain is tantamount to solving for the values of

the angles at the various times, i.e., finding the values qk = q(tk)
for k = 1, . . . , N .

Given this setup, how can we compute the qk’s? There are actu-
ally many choices, and the important point to realize is, not all of
them perform equally well.

3.2 Three Numerical Schemes

Assuming that the time step h is small enough with respect to all
other derivatives of q, we could leverage the well-known Taylor
expansion:

q(t+ h) = q(t) + hq̇(t) +O(h) .

Using this first order approximation, one can easily derive the fol-
lowing, straightforward update rules by applying Taylor expansion
to both q and v:

{
qk+1 = qk + h vk

vk+1 = vk − h
g

L
sin qk

Given the previous values qk, vk, this method gives us an explicit
formula to compute the next values in time qk+1, vk+1; this specific
time integrator is called the explicit Euler method. Repeating this
procedure by setting k := k + 1 provides a way to compute the
whole motion.

Alternatively, we could change the time integration procedure by
evaluating the right hand sides of the former rules at the next time
step, through:

{
qk+1 = qk + h vk+1

vk+1 = vk − h
g

L
sin qk+1

This method is no longer explicit, but implicit: one needs to use
a (non-linear) solver to find the pair qk+1, vk+1 that satisfy these
equations, given the current values qk and vk. This time integrator
is traditionally called the implicit Euler method.

Finally, one could use a seemingly strange mix of the two, by
first updating vk+1 explicitly, then qk+1 using the new value vk+1
(thus, still explicitly):

{
vk+1 = vk − h

g

L
sin qk

qk+1 = qk + h vk+1

Notice that the difference with the first scheme is rather minimal.
However, this particular time integrator is known as the symplectic
Euler method.

These three methods are called finite difference methods, since
they approximate the left-hand side derivatives of Eqs. (2-3) by tak-
ing the difference between consecutive values. Notice in particular
that, while the implicit method is more computationally expensive,
the two others involve the exact same amount of operations. Thus,
their behavior should not be very different, right?

3.3 Comparing Integrators

Numerical tests of these three integrators reveal obvious differences
in practice (to avoid going too much into sordid details of numer-
ical analysis, we will stick to a fixed time step h = 0.01 for all
experiments). First, one quickly realizes that the explicit Euler suf-
fers from stability problems: the motion of the pendulum amplifies
over time! An obvious consequence is that the pendulum’s energy
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Figure 1: Three integrators in phase space (q, p): (left) explicit, (middle) implicit, (right) symplectic. Six initial conditions are shown, with their respective
trajectories; only the symplectic integrator captures the periodic nature of the pendulum. The bold trajectories correspond to the exact same initial condition.

increases over time, rather than being conserved. Thus, in prac-
tice, the solution often “blows up” and becomes unstable as time
progresses—not a great quality for a time integrator. Fortunately,
the implicit Euler is stable: the amplitude of the pendulum’s os-
cillations actually decreases over time, avoiding any chance of nu-
merical divergence (see Fig. 2). However, this stability comes at
a cost: the pendulum loses energy, causing the pendulum to slow
down towards a stop, even if our original equations do not include
any damping forces. Effectively, we resolved the stability issue
through the introduction of numerical dissipation—but we induced
the opposite problem instead. The symplectic method, on the other
hand, both is stable and oscillates with constant amplitudes. This
is obviously a superior method for physical simulation, given that
no additional numerical operations were needed to get the correct
qualitative behavior!

Figure 2: The pendulum: for the equation of motion of a pendulum of length
L and unit mass in a gravitation field g (left), our three integrators behave
very differently: while the explicit Euler integrator exhibits amplifying oscil-
lations, the implicit one dampens the motion, while the symplectic integrator
perfectly captures the periodic nature of the pendulum.

Now, if we are only solving for the position of the pendulum
only at one particular time, it does not really matter which method
we use: taking small enough time steps will guarantee arbitrarily
good accuracy. However, if we wish our time integrator to be glob-
ally predictive, the least we can ask for is to get a pendulum that
actually keeps on swinging. Even a simple animation of a grandfa-
ther clock or a child on a swing would look unrealistic if it seemed
to gain or lose amplitude inexplicably. In other words, the behavior
of energy over time is of key importance. But how do we know that
an integrator will have these good properties ahead of time? Can
we construct them for an arbitrary physical system? The answer, as
we shall see, comes from the world of geometric mechanics and a
concept called symplecticity.

4 Geometric Mechanics

In the familiar Newtonian view of mechanics, we begin by adding
up the forces F on a body and writing the equations of motion using

the famous second law,

F = ma, (4)

where a represents the acceleration of the body. With geomet-
ric mechanics, however, we consider mechanics from a variational
point of view. In this section, we review the basic foundations of
Lagrangian mechanics, one of the two main flavors of geometric
mechanics (we will only point to some connections with Hamil-
tonian mechanics).

4.1 Lagrangian Mechanics

Consider a finite-dimensional dynamical system parameterized by
the state variable q, i.e., the vector containing all degrees of free-
dom of the system. In mechanics, a function of a position q and
a velocity q̇ called the Lagrangian function L is defined as the ki-
netic energy K (usually, only function of the velocity) minus the
potential energy U of the system (usually, only function of the state
variable):

L(q, q̇) = K(q̇)− U(q).

Variational Principle The action functional is then introduced
as the integral of L along a path q(t) for time t ∈ [0, T ]:

S(q) =

∫ T

0

L(q, q̇) dt.

With this definition, the main result of Lagrangian dynamics,
Hamilton’s principle, can be expressed quite simply: this varia-
tional principle states that the correct path of motion of a dynamical
system is such that its action has a stationary value, i.e., the inte-
gral along the correct path has the same value to within first-order
infinitesimal perturbations. As an “integral principle” this descrip-
tion encompasses the entire motion of a system between two fixed
times (0 and T in our setup). In more ways than one, this principle
is very similar to a statement on the geometry of the path q(t): the
action can be seen as the analog of a measure of “curvature”, and
the path is such that this curvature is extremized (i.e., minimized or
maximized).

Euler-Lagrange Equations How do we determine which path
optimizes the action, then? The method is similar to optimizing an
ordinary function. For example, given a function f(x), we know
that its critical points exist where the derivative ∇f(x) = 0. Since
q is a path, we cannot simply take a “derivative” with respect to
q; instead, we take something called a variation. A variation of
the path q is written δq, and can be thought of as an infinitesimal

Discrete Differential Geometry: An Applied Introduction SIGGRAPH 2006

77



perturbation to the path at each point, with the important property
that the perturbation is null at the endpoints of the path. Computing
variations of the action induced by variations δq of the path q(t)
results in:

δS(q) = δ

∫ T

0

L(q(t), q̇(t)) dt =

∫ T

0

[
∂L

∂q
· δq + ∂L

∂q̇
· δq̇
]
dt

=

∫ T

0

[
∂L

∂q
− d
dt

(
∂L

∂q̇

)]
δq dt +

[
∂L

∂q̇
· δq
]T

0

,

where integration by parts is used in the last equality. When the
endpoints of q(t) are held fixed with respect to all variations δq(t)
(i.e., δq(0) = δq(T ) = 0), the rightmost term in the above equa-
tion vanishes. Therefore, the condition of stationary action for ar-
bitrary variations δq with fixed endpoints stated in Hamilton’s prin-
ciple directly indicates that the remaining integrand in the previous
equation must be zero for all time t, yielding what is known as the
Euler-Lagrange equations:

∂L

∂q
− d
dt

(
∂L

∂q̇

)
= 0. (5)

For a given Lagrangian, this formula will give the equations of mo-
tion of the system.

Forced Systems To account for non-conservative forces or dis-
sipation F , the least action principle is modified as follows:

δ

∫ T

0

L(q(t), q̇(t)) dt+

∫ T

0

F (q(t), q̇(t)) · δq dt = 0 .

This is known as the Lagrange-d’Alembert principle.

Lagrangian vs. Hamiltonian Mechanics. Hamiltonian me-
chanics provides an alternative formulation, which is closely related
to the Lagrangian. The reader may consult any book on mechanics
for the relationships between the two descriptions. We simply point
out here (as it will be useful later) that in the Hamiltonian formu-
lation, the dynamics are described in phase space, i.e, the current
state of a dynamical system is given as a pair (q, p), where q is the
state variable, while p is the momentum, defined by p = ∂L/∂q̇.

4.2 Example

Let make the previous definitions more concrete by detailing a par-
ticularly simple example. Given a particle with massM in a grav-
itational field, i.e., in a potential field V = Mg · q, the Lagrangian
is written:

L(q, q̇) =
1

2
q̇TMq̇ −Mg · q.

Taking the variation of the action, one gets:

δ

∫ b

a

(
1

2
q̇TMq̇ −Mg q

)
dt =

∫ b

a

(Mq̇ · δq̇ −Mg · δq) dt.

Next, we integrate the δq̇ term by parts; the boundary terms disap-
pear, since δq = 0 at the endpoints.

=

∫ b

a

(−Mq̈ −Mg) · δq dt = 0.

Since the integral equals 0 for any variation δq, the first term
inside the integral must equal 0. Therefore, the Euler-Lagrange
equations become:

Mq̈ = −Mg,
which are precisely the Newtonian equation of motion F = ma .

4.3 Symmetries and Invariants

Finally, we arrive at a crucial question: why exactly do physical
systems conserve certain quantities? If we can answer this ques-
tion and mimic the continuous dynamics in our discrete imple-
mentations, only then can we hope to get good numerical prop-
erties for our time integrators. This question is partially answered
by Noether’s theorem, an extremely powerful theorem in physics
which states that each symmetry of a system leads to a physical
invariant (i.e., a conserved quantity). For example, take the dynam-
ics of an elastic object in the void. The Lagrangian can easily be
shown to be translation invariant: translating all the mass particles
of the elastic object would not change the value of the Lagrangian.
Similarly, the Lagrangian is rotation-invariant as moving all the par-
ticles of the object by a global rotation has no reason to affect the
Lagrangian either. This means that the system has a translational
and rotational symmetry. Noether’s theorem then states that the
linear and angular momenta are preserved. These symmetries, if
respected in the discrete setting, will provide equivalent discrete in-
variants in time integrators! In fact, we will see that these invariants
can be preserved in time integrators at no extra computational cost
by simply respecting the geometric, variational nature of dynamics.

4.4 Phase Space and Symplecticity

To visualize a dynamical system, we often plot its trajectories in
phase space. In its simplest version as in the one-dimensional pen-
dulum case, it is in fact a phase plane where one axis represents the
position q and the other axis represents either velocity q̇ or, more
usually, momentum p = mq̇. Note that for higher dimensional sys-
tems, there is an additional axis corresponding to each additional
position component qi and its corresponding velocity q̇i (or mo-
mentum pi). The graphs that result from plotting the trajectories in
phase space are called phase portraits.

Going back to our motivating example of the pendulum, we can
now more clearly see the qualities/flaws of the time integrators by
looking at their respective phase portraits in Fig. 1. While the
pendulum’s phase portrait has a characteristic structure of nested,
energy-preserving orbits (since the oscillations are periodic), this
was not true for the two first discrete approximations: the trajec-
tories of explicit Euler spiraled outwards (dramatically increasing
magnitude of oscillations, thus energy), while those of implicit
Euler spiraled inwards. Why did some of the phase portraits look
better than others? How can we preserve the closedness of the or-
bits without making the time integrator more complicated?

One of the key features of Lagrangian flows (i.e., motions) is that
they are symplectic. Formally, this means that the flow preserves
the canonical two-form Ω = dqi ∧ dpi. In the two-dimensional
phase plane, this directly implies that the area of any phase-space
region is preserved under the flow (see Liouville’s theorem in clas-
sical mechanics). For example, let us take a given region of initial
conditions in phase-space. If we advance all these states simulta-
neously, the regions deforms under the flow in a way that preserves
the original area as shown in Fig. 3 a cat-head shaped region: this
phenomenon is called symplecticity. However, as seen on this same
figure, explicit and implicit Euler both fail the test of symplecticity.
Because orbits spiral outward under explicit Euler, a region will
expand, and its area will increase. Conversely, implicit Euler de-
creases the area inside the evolving region. Preserving this property
of the flow in phase space for our time integrators (that is, having
them be symplectic in a discrete sense) is key to ensure globally
correct behavior!
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Figure 3: Symplecticity [reproduced from [Hairer et al. 2002]]: while a continuous Lagrangian system is symplectic (that is to say, in this simple case, an area
in phase space evolves along the flow without changing its area), discrete time integrators rarely share this property. From our three time integrators compared
in Section 3, only the last one is symplectic. In the background, the reader will recognize the shape of the orbits obtained in Fig. 1(right).

5 Discrete Geometric Mechanics

Having quickly reviewed classical Lagrangian mechanics in the
continuous domain, we now explain how this geometric view of
mechanics can elegantly be mimicked in the discrete setting.

5.1 General Idea

The driving idea behind discrete geometric mechanics is to lever-
age the variational nature of mechanics and to preserve this varia-
tional structure in the discrete setting. In fact, very few integrators
have a variational nature: the explicit and implicit Euler methods
discussed above are not variational, and not surprisingly, they both
exhibited poor global behavior in the case of the pendulum. Instead
of simply approximating the equations of motion to first (or higher)
order as we did before, one can directly discretize the variational
principle behind them. That is, if one designs a discrete equivalent
of the Lagrangian, then discrete equations of motion can be easily
derived from it by paralleling the derivations followed in contin-
uous case. In essence, good numerical methods will come from
discrete analogs to the Euler-Lagrange equations—equations that
truly derive from a variational principle.

5.2 Discrete Lagrangian Dynamics

Setup The main idea is to discretize the least action princi-
ple directly rather than discretizing (5). To this end, a path
q(t) for t ∈ [0, T ] is replaced by a discrete path q : {t0 =
0, t1, . . . , tk, . . . , tN = T} where k,N ∈ N. Here, qk is viewed
as an approximation to q(tk).

Discrete Lagrangian The Lagrangian L is approximated
on each time interval [tk, tk+1] by a discrete Lagrangian1

Ld(qk, qk+1, h), with h being the time interval between two sam-
ples h = tk+1 − tk (chosen here to be constant for simplicity):

Ld(qk, qk+1) ≈
∫ tk+1

tk

L(q, q̇) dt.

Now, the right-hand side integral can be approximated through a
one-point quadrature, i.e., by the length of the interval times the
value of the integrand evaluated somewhere between qk and qk+1
and with q̇ replaced by (qk+1 − qk)/h:

Ld(qk, qk+1, h) = hL
(
(1− α)qk + αqk+1,

qk+1 − qk
h

)
(6)

where α ∈ [0, 1]. For α = 1/2, the quadrature is second-order
accurate, while any other value leads to linear accuracy.

1This term could also be called an action, as it is a time integral of a
Lagrangian; however, just like the term “discrete curvature” in CG refers
to a small local integral of a continuous curvature, we prefer this naming
convention.

Discrete Stationary Action Principle Given the discrete La-
grangian, the discrete action functional becomes simply a sum:

Sd :=Sd({qi}i=0..N )=
N−1∑

k=0

Ld(qk, qk+1)≈
∫ b

a

L(q, q̇) dt=S(q).

Taking fixed-endpoint variations of this discrete action Sd, we ob-
tain:

δSd =

N−1∑

k=0

[
D1Ld(qk, qk+1) · δqk +D2Ld(qk, qk+1) · δqk+1

]
,

whereD1L (resp.,D2L) denotes the partial derivative with respect
to the first (resp., second) arguments of L. Reindexing the right-
most terms, and using the fixed endpoint condition δq0 = δqN = 0,
one gets:

δSd =

N−1∑

k=1

[
D1Ld(qk, qk+1) +D2Ld(qk−1, qk)

]
· δqk.

Setting this variation equal to 0 and noting that each δqk is arbitrary,
we arrive at the discrete Euler-Lagrange (DEL) equations

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0. (7)

Notice that this condition only involves three consecutive posi-
tions. Therefore, for two given successive positions qk and qk+1,
Eq. (7) defines qk+2. That is, these equations of motion are actually
the algorithm for an integrator! And since the DEL equations de-
rive from the extremization of a discrete action, such an algorithm
enforces the variational aspect of the motion numerically.

Link to Previous Numerical Schemes Let us go back to the
pendulum case. For this system, the Lagragian (kinetic energy mi-
nus potential energy) is:

L(q, q̇) =
1

2
L2q̇2 + gL cos(q).

First, the user can convince her/himself that the Euler-Lagrange
equation is indeed, Eq. (1) through a simple derivation. Second,
it is also a simple (yet, interesting) exercise to verify that the sym-
plectic Euler integrator used earlier results from the DEL equations
just described, for the particular choice of α = 0 in the quadrature
rule defined in Eq. 6.

5.3 Update Rule in Phase Space

In mechanics, the initial conditions are typically specified as a po-
sition and a velocity or momentum rather than two positions, there-
fore it is beneficial to write (7) in a position-momentum form [West
2003]. To this end, define the momentum at time tk to be:

pk := D2Ld(qk−1, qk) = −D1Ld(qk, qk+1)
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where the second equality holds due to (7). The position-
momentum form of the variational integrator discussed above is
then given by:

pk = −D1Ld(qk, qk+1) , pk+1 = D2Ld(qk, qk+1). (8)

For (qk, pk) known, (8)(left) is an (often implicit) equation whose
solution gives qk+1. qk+1 is then substituted in (8)(right) to find
pk+1. This provides an update rule in phase space.

5.4 Adding Dissipation

In case of forcing and/or dissipation, the discrete action can be mod-
ified by adding the non-conservative force term and using the dis-
crete Lagrange-d’Alembert principle [Marsden and West 2001]:

δSd +
N∑

k=0

(
F−d (qk, qk+1) · δqk + F

+
d (qk, qk+1) · δqk+1

)
=0.

where F−d (qk, qk+1) and F+d (qk, qk+1) are discrete external forces
acting respectively on the right of qk and on the left of qk+1.
In other words, F−d (qk, qk+1) · δqk + F

+
d (qk, qk+1) · δqk+1 can

be seen as a two-point quadrature of the continuous forcing term∫ tk+1
tk

F · δq dt. The forced discrete Euler-Lagrange equations can
be expressed in a convenient, position-momentum form as follows:

pk = −D1Ld(qk, qk+1)− F−d (qk, qk+1) ,
pk+1 = D2Ld(qk, qk+1) + F

+
d (qk, qk+1).

This variational treatment of energy decay, despite its simplicity,
has also been proven superior to the usual time integration schemes
that often add numerical viscosity to get stability [West 2003].

5.5 Last Words

Variational integrators often perform better than their non-
variational counterparts because they preserve the underlying
geometry of the physical system. This has two important conse-
quences. First, the integrators are guaranteed to be symplectic,
which in practice will result in excellent energy behavior, rather
than perpetual damping or blowing up. Second, they are also guar-
anteed to preserve discrete momenta of the system. As a conse-
quence, simulations and animations using these integrators usually
have great physical and visual fidelity with low computational cost.
Caveat: The reader may be misled into thinking that our scheme
does not require the typical Courant-Friedrichs-Levy (CFL) condi-
tion (or equivalent) on the time step size. This is, of course, untrue:
the same usual theoretical limitations of explicit schemes are still
valid for symplectic explicit schemes. However, we can easily de-
sign symplectic implicit schemes that do not share this particular
limitation, generally allowing for much larger time steps. Finally,
we can make them of arbitrarily higher order by simply improving
the quadrature rule used to convert the continuous Lagrangian into
a discrete Lagrangian.
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