








ization is interpolated with respect to the overlay graph, justifying
the extra expense of computing the overlay graph if the lowest pos-
sible distortion is to be achieved.

Figure 9: Comparison of the distortion error when using the iLB
operator to compute harmonic parameterizations (here with natu-
ral boundary conditions). On the left the parametric assignments at
vertices are interpolated with respect to the original triangulation
while on the right the iDT is used.

The lowering of distortion is also noticeable in other parameteri-
zation applications. Kharevych et al. [2006] used circle patterns
to compute discrete conformal mappings for embedded meshes.
Briefly, in this approach discrete conformal mappings for triangle
meshes (of arbitrary topology) are computed via triangle circum-
circles and the angles they make with one another at shared edges.
A requirement of the underlying theory is that all these angles be
in [0,π]. While this can be enforced through clipping illegal values
to the nearest legal value, a better approach is to change the com-
binatorics of the triangulation so that it is iDT. Figure 10 compares
the distortion for two datasets when using the original triangulation
(left column) and iDT (right column).

4 Conclusion
Given a triangle mesh annotated with lengths for every edge (as-
suming these lengths satisfy the triangle inequality) an intrinsic
Delaunay triangulation is well defined and can be found with the
help of a simple and low cost edge flipping algorithm. If explicit
representations of the iDT edge crossings are required, an overlay
graph can be incrementally maintained, using only combinatorial
considerations. For applications which require a discrete Laplace-
Beltrami operator (e.g., denoising, parameterization, editing, sim-
ulation), defining it over the iDT has numerical advantages from
improved condition numbers to lower error in the computations,
and a reduced need for special case handling.

Clearly an (embedded) mesh which is intrinsically Delaunay to be-
gin with is most desirable. It would be interesting to explore this as
a constraint in remeshing algorithms, be they for static, or dynam-
ically deforming, surfaces. Finally, we mention the challenge of
making the algorithm robust. While we have not experienced any
problems in our experiments, correct execution (and termination) of
the implementation of the algorithm will likely require more than
simple floating point arithmetic.
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Figure 10: Two examples (Hygeia, genus zero; cut camel with
free boundaries) comparing distortion for original triangulation
(left column) and iDT (right column). (Used with permission
from [Kharevych et al. 2006].)
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2003. Discrete Shells. In Symp. on Comp. Anim., 62–67.
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Abstract

In this chapter, we present a geometric—instead of a traditional
numerical-analytic—approach to the problem of time integration.
Geometry at its most abstract is the study of symmetries and their
associated invariants. Variational approaches based on such notions
are commonly used in geometric modeling and discrete differen-
tial geometry. Here we will treat mechanics in a similar way. In-
deed, the very essence of a mechanical system is characterized by
its symmetries and invariants. Thus preserving these symmetries
and invariants (e.g., certain momenta) into the discrete computa-
tional setting is of paramount importance if one wants discrete time
integration to properly capture the underlying continuous motion.
Motivated by the well-known variational and geometric nature of
most dynamical systems, we review the use of discrete variational
principles as a way to derive robust, and accurate time integrators.

1 Introduction

Prediction is difficult, especially of the future.

—Mark Twain

Time Evolution of Dynamical Systems Time evolving phe-
nomena such as the swinging of a clock pendulum, the bouncing of
a soft ball on the floor, or even biological systems and stock market
indicators are often modeled (i.e., studied and understood) as dy-
namical systems. Mathematical models of the evolution in time of
these systems generally involve systems of differential equations.
Solving a physical system means figuring out how to move the sys-
tem forward in time from a set of initial conditions, allowing the
computation of, for instance, the trajectory of the soft ball (i.e., its
position as a function of time) thrown onto the floor. Although
this example can easily be solved analytically, direct solutions of
the differential equations governing a system are generally hard or
impossible—we need to resort to numerical techniques to find a
discrete temporal description of a motion. Consequently, there has
been a significant amount of research in applied mathematics on
how to deal with some of the most useful systems of equations,
leading to a plethora of numerical schemes with various proper-
ties, orders of accuracy, and levels of complexity of implementation
(see [Press et al. 1992] for a general overview).

Accurate vs. Qualitative Integrators While it is unavoidable
to make approximations in numerical algorithms (i.e., to differ from
the continuous equivalent), the matter becomes whether the numer-
ics can provide satisfactory results. The notion of satisfactory is,
however, objective-dependent. If simulation is used for the design
of a plane wing through a series of tests over a wide range of situa-
tions, qualitative reproduction of the wing behavior may be prefer-
able over absolute numerical accuracy. If, however, simulation is
used to find the proper launch parameters for a satellite to be put
at a particular orbit, accurate results are crucial. This apparent mis-
match in objectives has been, historically, aggravated by the cultural
gap existing between applied and theoretical communities. We will

show that in fact, one does not have to ask for either predictability
or accuracy: simple methods exist that guarantee good statistical
predictability by respecting the geometric properties of the exact
flow of the differential equations, while being also easily rendered
arbitrarily accurate.

Animation, or Simulation? In Computer Animation, time in-
tegrators are crucial computational tools at the core of most physics-
based animation techniques. Animating a rigid body for instance
uses the principles of classical mechanics, involving second or-
der differential equations. In their most rudimentary form, these
principles express the relationship between forces acting on the
body and its acceleration given by Newton’s laws of motion. From
these equations of motion, classical time integrators (such as fourth-
order Runge-Kutta, implicit Euler, and more recently the Newmark
scheme) have been methods of choice in practice [Parent 2001;
Hauth et al. 2003] to result in motions with good visual behavior—
arguably, the top priority in graphics. Nonetheless, allowing the
equations of motion to be slightly violated is commonly used to
better control the resulting animation [Barzel et al. 1996], as long
as it still looks visually plausible. In other words, local accuracy
can be tinkered with just as long as the motion is still “globally”
right.

Goals In this chapter, we provide an introduction to geometric
mechanics, first from a continuous, then from a discrete point of
view. Departing sharply from traditional numerical-analytic expo-
sitions, we point out how respecting the geometry of mechanics is
not only natural, but it provides simple and powerful foundations
for the design of robust time integrators. In particular, we will in-
troduce the notion of variational integrators as a class of solvers
specifically designed to preserve this underlying physical structure,
even for large time steps that would produce overdamped or diverg-
ing results with more traditional methods.

2 Geometric Approach to Mechanics

Dynamics as a Variational Problem Considering mechan-
ics from a variational point of view goes back to Euler, Lagrange
and Hamilton. The form of the variational principle most important
for continuous mechanics is due to Hamilton, and is often called
Hamilton’s principle or the least action principle: it states that a
dynamical system always finds an optimal course from one posi-
tion to another—or, as P.L. Moreau de Maupertuis put it, “Nature
is thrifty in all its actions”. A more formal definition will be pre-
sented in Section 4.1, but one consequence is that we can recast the
traditional way of thinking about an object accelerating in response
to applied forces into a geometric viewpoint. There, the path fol-
lowed by the object has optimal geometric properties—analog to
the notion of geodesics on curved surfaces. This point of view is
equivalent to Newton’s laws in the context of classical mechanics,
but is broad enough to encompass areas ranging to E&M and quan-
tum mechanics.
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Discrete Structure-Preserving Integrators Geometric in-
tegrators are a class of numerical time-stepping methods that ex-
ploit this geometric structure of mechanical systems [Hairer et al.
2002]. Of particular interest within this class, variational integra-
tors [Marsden and West 2001] discretize the variational formulation
of mechanics we mentioned above, providing a solution for most
ordinary and partial differential equations that arise in mechanics.
While the idea of discretizing variational formulations of mechan-
ics is standard for elliptic problems using Galerkin Finite Element
methods for instance, only recently has it been used to derive vari-
ational time-stepping algorithms for mechanical systems. This ap-
proach allows the construction of integrators with any order of ac-
curacy [West 2003; Lew 2003], and can handle constraints as well
as external forcing. Results have been shown to be equal or supe-
rior to all other types of integrators for simulations of a large range
of physical phenomena [Kane et al. 2000], making this discrete-
geometric framework both versatile and powerful.

Of particular interest in computer animation, the simplest varia-
tional integrator can be implemented by taking two consecutive po-
sitions q0 = q(t0) and q1 = q(t0+dt) of the system to compute the
next position q2 = q(t0 + 2dt). Repeating this process calculates
an entire discrete (in time) trajectory. In this chapter, we describe
the foundations necessary to derive such variational schemes based
on geometric arguments.

3 A Motivating Example: The Pendulum

Before we delve into the details of what variational integrators are,
let us first look at a simple example to exemplify how slight varia-
tions in the design of time integrators can result in widely different
behaviors.

3.1 Setup and Conventions

Consider a simple pendulum of mass m and length L, swinging
under the influence of the gravitational acceleration g. Let q(t)
represents the pendulum’s angle with the vertical at time t. As this
angle is the only degree of freedom for this simple example, we can
express the equations of motion for this system based solely on q
and its derivatives:

q̈ = − g
L
sin q, (1)

where we use the “dot” notation to represent derivatives with re-
spect to time, i.e.:

q̇ :=
dq

dt
, and q̈ :=

d2q

dt2
.

We can rewrite this equation as a system of two coupled first-order
equations in the variables q and v:

q̇ = v (2)

v̇ = − g
L
sin q (3)

If the initial conditions q(0) and q̇(0) are given, then we could theo-
retically solve this differential equation for q. Assume for a moment
that we don’t have access to the analytical solution to this problem
(in fact, as in many cases, no such solution is known). We can only
hope to approximate the solution using an integrator. To achieve
this goal, we first discretize the problem. That is, we break up time
intoN equal steps of length h, so that we no longer have a continu-
ous notion of time, but have instead a discrete set of times tk = kh.
Then, finding an approximation to the differential equation on our
new discrete time domain is tantamount to solving for the values of

the angles at the various times, i.e., finding the values qk = q(tk)
for k = 1, . . . , N .

Given this setup, how can we compute the qk’s? There are actu-
ally many choices, and the important point to realize is, not all of
them perform equally well.

3.2 Three Numerical Schemes

Assuming that the time step h is small enough with respect to all
other derivatives of q, we could leverage the well-known Taylor
expansion:

q(t+ h) = q(t) + hq̇(t) +O(h) .

Using this first order approximation, one can easily derive the fol-
lowing, straightforward update rules by applying Taylor expansion
to both q and v:

{
qk+1 = qk + h vk

vk+1 = vk − h
g

L
sin qk

Given the previous values qk, vk, this method gives us an explicit
formula to compute the next values in time qk+1, vk+1; this specific
time integrator is called the explicit Euler method. Repeating this
procedure by setting k := k + 1 provides a way to compute the
whole motion.

Alternatively, we could change the time integration procedure by
evaluating the right hand sides of the former rules at the next time
step, through:

{
qk+1 = qk + h vk+1

vk+1 = vk − h
g

L
sin qk+1

This method is no longer explicit, but implicit: one needs to use
a (non-linear) solver to find the pair qk+1, vk+1 that satisfy these
equations, given the current values qk and vk. This time integrator
is traditionally called the implicit Euler method.

Finally, one could use a seemingly strange mix of the two, by
first updating vk+1 explicitly, then qk+1 using the new value vk+1
(thus, still explicitly):

{
vk+1 = vk − h

g

L
sin qk

qk+1 = qk + h vk+1

Notice that the difference with the first scheme is rather minimal.
However, this particular time integrator is known as the symplectic
Euler method.

These three methods are called finite difference methods, since
they approximate the left-hand side derivatives of Eqs. (2-3) by tak-
ing the difference between consecutive values. Notice in particular
that, while the implicit method is more computationally expensive,
the two others involve the exact same amount of operations. Thus,
their behavior should not be very different, right?

3.3 Comparing Integrators

Numerical tests of these three integrators reveal obvious differences
in practice (to avoid going too much into sordid details of numer-
ical analysis, we will stick to a fixed time step h = 0.01 for all
experiments). First, one quickly realizes that the explicit Euler suf-
fers from stability problems: the motion of the pendulum amplifies
over time! An obvious consequence is that the pendulum’s energy
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Figure 1: Three integrators in phase space (q, p): (left) explicit, (middle) implicit, (right) symplectic. Six initial conditions are shown, with their respective
trajectories; only the symplectic integrator captures the periodic nature of the pendulum. The bold trajectories correspond to the exact same initial condition.

increases over time, rather than being conserved. Thus, in prac-
tice, the solution often “blows up” and becomes unstable as time
progresses—not a great quality for a time integrator. Fortunately,
the implicit Euler is stable: the amplitude of the pendulum’s os-
cillations actually decreases over time, avoiding any chance of nu-
merical divergence (see Fig. 2). However, this stability comes at
a cost: the pendulum loses energy, causing the pendulum to slow
down towards a stop, even if our original equations do not include
any damping forces. Effectively, we resolved the stability issue
through the introduction of numerical dissipation—but we induced
the opposite problem instead. The symplectic method, on the other
hand, both is stable and oscillates with constant amplitudes. This
is obviously a superior method for physical simulation, given that
no additional numerical operations were needed to get the correct
qualitative behavior!

Figure 2: The pendulum: for the equation of motion of a pendulum of length
L and unit mass in a gravitation field g (left), our three integrators behave
very differently: while the explicit Euler integrator exhibits amplifying oscil-
lations, the implicit one dampens the motion, while the symplectic integrator
perfectly captures the periodic nature of the pendulum.

Now, if we are only solving for the position of the pendulum
only at one particular time, it does not really matter which method
we use: taking small enough time steps will guarantee arbitrarily
good accuracy. However, if we wish our time integrator to be glob-
ally predictive, the least we can ask for is to get a pendulum that
actually keeps on swinging. Even a simple animation of a grandfa-
ther clock or a child on a swing would look unrealistic if it seemed
to gain or lose amplitude inexplicably. In other words, the behavior
of energy over time is of key importance. But how do we know that
an integrator will have these good properties ahead of time? Can
we construct them for an arbitrary physical system? The answer, as
we shall see, comes from the world of geometric mechanics and a
concept called symplecticity.

4 Geometric Mechanics

In the familiar Newtonian view of mechanics, we begin by adding
up the forces F on a body and writing the equations of motion using

the famous second law,

F = ma, (4)

where a represents the acceleration of the body. With geomet-
ric mechanics, however, we consider mechanics from a variational
point of view. In this section, we review the basic foundations of
Lagrangian mechanics, one of the two main flavors of geometric
mechanics (we will only point to some connections with Hamil-
tonian mechanics).

4.1 Lagrangian Mechanics

Consider a finite-dimensional dynamical system parameterized by
the state variable q, i.e., the vector containing all degrees of free-
dom of the system. In mechanics, a function of a position q and
a velocity q̇ called the Lagrangian function L is defined as the ki-
netic energy K (usually, only function of the velocity) minus the
potential energy U of the system (usually, only function of the state
variable):

L(q, q̇) = K(q̇)− U(q).

Variational Principle The action functional is then introduced
as the integral of L along a path q(t) for time t ∈ [0, T ]:

S(q) =

∫ T

0

L(q, q̇) dt.

With this definition, the main result of Lagrangian dynamics,
Hamilton’s principle, can be expressed quite simply: this varia-
tional principle states that the correct path of motion of a dynamical
system is such that its action has a stationary value, i.e., the inte-
gral along the correct path has the same value to within first-order
infinitesimal perturbations. As an “integral principle” this descrip-
tion encompasses the entire motion of a system between two fixed
times (0 and T in our setup). In more ways than one, this principle
is very similar to a statement on the geometry of the path q(t): the
action can be seen as the analog of a measure of “curvature”, and
the path is such that this curvature is extremized (i.e., minimized or
maximized).

Euler-Lagrange Equations How do we determine which path
optimizes the action, then? The method is similar to optimizing an
ordinary function. For example, given a function f(x), we know
that its critical points exist where the derivative ∇f(x) = 0. Since
q is a path, we cannot simply take a “derivative” with respect to
q; instead, we take something called a variation. A variation of
the path q is written δq, and can be thought of as an infinitesimal
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perturbation to the path at each point, with the important property
that the perturbation is null at the endpoints of the path. Computing
variations of the action induced by variations δq of the path q(t)
results in:

δS(q) = δ

∫ T

0

L(q(t), q̇(t)) dt =

∫ T

0

[
∂L

∂q
· δq + ∂L

∂q̇
· δq̇
]
dt

=

∫ T

0

[
∂L

∂q
− d
dt

(
∂L

∂q̇

)]
δq dt +

[
∂L

∂q̇
· δq
]T

0

,

where integration by parts is used in the last equality. When the
endpoints of q(t) are held fixed with respect to all variations δq(t)
(i.e., δq(0) = δq(T ) = 0), the rightmost term in the above equa-
tion vanishes. Therefore, the condition of stationary action for ar-
bitrary variations δq with fixed endpoints stated in Hamilton’s prin-
ciple directly indicates that the remaining integrand in the previous
equation must be zero for all time t, yielding what is known as the
Euler-Lagrange equations:

∂L

∂q
− d
dt

(
∂L

∂q̇

)
= 0. (5)

For a given Lagrangian, this formula will give the equations of mo-
tion of the system.

Forced Systems To account for non-conservative forces or dis-
sipation F , the least action principle is modified as follows:

δ

∫ T

0

L(q(t), q̇(t)) dt+

∫ T

0

F (q(t), q̇(t)) · δq dt = 0 .

This is known as the Lagrange-d’Alembert principle.

Lagrangian vs. Hamiltonian Mechanics. Hamiltonian me-
chanics provides an alternative formulation, which is closely related
to the Lagrangian. The reader may consult any book on mechanics
for the relationships between the two descriptions. We simply point
out here (as it will be useful later) that in the Hamiltonian formu-
lation, the dynamics are described in phase space, i.e, the current
state of a dynamical system is given as a pair (q, p), where q is the
state variable, while p is the momentum, defined by p = ∂L/∂q̇.

4.2 Example

Let make the previous definitions more concrete by detailing a par-
ticularly simple example. Given a particle with massM in a grav-
itational field, i.e., in a potential field V = Mg · q, the Lagrangian
is written:

L(q, q̇) =
1

2
q̇TMq̇ −Mg · q.

Taking the variation of the action, one gets:

δ

∫ b

a

(
1

2
q̇TMq̇ −Mg q

)
dt =

∫ b

a

(Mq̇ · δq̇ −Mg · δq) dt.

Next, we integrate the δq̇ term by parts; the boundary terms disap-
pear, since δq = 0 at the endpoints.

=

∫ b

a

(−Mq̈ −Mg) · δq dt = 0.

Since the integral equals 0 for any variation δq, the first term
inside the integral must equal 0. Therefore, the Euler-Lagrange
equations become:

Mq̈ = −Mg,
which are precisely the Newtonian equation of motion F = ma .

4.3 Symmetries and Invariants

Finally, we arrive at a crucial question: why exactly do physical
systems conserve certain quantities? If we can answer this ques-
tion and mimic the continuous dynamics in our discrete imple-
mentations, only then can we hope to get good numerical prop-
erties for our time integrators. This question is partially answered
by Noether’s theorem, an extremely powerful theorem in physics
which states that each symmetry of a system leads to a physical
invariant (i.e., a conserved quantity). For example, take the dynam-
ics of an elastic object in the void. The Lagrangian can easily be
shown to be translation invariant: translating all the mass particles
of the elastic object would not change the value of the Lagrangian.
Similarly, the Lagrangian is rotation-invariant as moving all the par-
ticles of the object by a global rotation has no reason to affect the
Lagrangian either. This means that the system has a translational
and rotational symmetry. Noether’s theorem then states that the
linear and angular momenta are preserved. These symmetries, if
respected in the discrete setting, will provide equivalent discrete in-
variants in time integrators! In fact, we will see that these invariants
can be preserved in time integrators at no extra computational cost
by simply respecting the geometric, variational nature of dynamics.

4.4 Phase Space and Symplecticity

To visualize a dynamical system, we often plot its trajectories in
phase space. In its simplest version as in the one-dimensional pen-
dulum case, it is in fact a phase plane where one axis represents the
position q and the other axis represents either velocity q̇ or, more
usually, momentum p = mq̇. Note that for higher dimensional sys-
tems, there is an additional axis corresponding to each additional
position component qi and its corresponding velocity q̇i (or mo-
mentum pi). The graphs that result from plotting the trajectories in
phase space are called phase portraits.

Going back to our motivating example of the pendulum, we can
now more clearly see the qualities/flaws of the time integrators by
looking at their respective phase portraits in Fig. 1. While the
pendulum’s phase portrait has a characteristic structure of nested,
energy-preserving orbits (since the oscillations are periodic), this
was not true for the two first discrete approximations: the trajec-
tories of explicit Euler spiraled outwards (dramatically increasing
magnitude of oscillations, thus energy), while those of implicit
Euler spiraled inwards. Why did some of the phase portraits look
better than others? How can we preserve the closedness of the or-
bits without making the time integrator more complicated?

One of the key features of Lagrangian flows (i.e., motions) is that
they are symplectic. Formally, this means that the flow preserves
the canonical two-form Ω = dqi ∧ dpi. In the two-dimensional
phase plane, this directly implies that the area of any phase-space
region is preserved under the flow (see Liouville’s theorem in clas-
sical mechanics). For example, let us take a given region of initial
conditions in phase-space. If we advance all these states simulta-
neously, the regions deforms under the flow in a way that preserves
the original area as shown in Fig. 3 a cat-head shaped region: this
phenomenon is called symplecticity. However, as seen on this same
figure, explicit and implicit Euler both fail the test of symplecticity.
Because orbits spiral outward under explicit Euler, a region will
expand, and its area will increase. Conversely, implicit Euler de-
creases the area inside the evolving region. Preserving this property
of the flow in phase space for our time integrators (that is, having
them be symplectic in a discrete sense) is key to ensure globally
correct behavior!
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Figure 3: Symplecticity [reproduced from [Hairer et al. 2002]]: while a continuous Lagrangian system is symplectic (that is to say, in this simple case, an area
in phase space evolves along the flow without changing its area), discrete time integrators rarely share this property. From our three time integrators compared
in Section 3, only the last one is symplectic. In the background, the reader will recognize the shape of the orbits obtained in Fig. 1(right).

5 Discrete Geometric Mechanics

Having quickly reviewed classical Lagrangian mechanics in the
continuous domain, we now explain how this geometric view of
mechanics can elegantly be mimicked in the discrete setting.

5.1 General Idea

The driving idea behind discrete geometric mechanics is to lever-
age the variational nature of mechanics and to preserve this varia-
tional structure in the discrete setting. In fact, very few integrators
have a variational nature: the explicit and implicit Euler methods
discussed above are not variational, and not surprisingly, they both
exhibited poor global behavior in the case of the pendulum. Instead
of simply approximating the equations of motion to first (or higher)
order as we did before, one can directly discretize the variational
principle behind them. That is, if one designs a discrete equivalent
of the Lagrangian, then discrete equations of motion can be easily
derived from it by paralleling the derivations followed in contin-
uous case. In essence, good numerical methods will come from
discrete analogs to the Euler-Lagrange equations—equations that
truly derive from a variational principle.

5.2 Discrete Lagrangian Dynamics

Setup The main idea is to discretize the least action princi-
ple directly rather than discretizing (5). To this end, a path
q(t) for t ∈ [0, T ] is replaced by a discrete path q : {t0 =
0, t1, . . . , tk, . . . , tN = T} where k,N ∈ N. Here, qk is viewed
as an approximation to q(tk).

Discrete Lagrangian The Lagrangian L is approximated
on each time interval [tk, tk+1] by a discrete Lagrangian1

Ld(qk, qk+1, h), with h being the time interval between two sam-
ples h = tk+1 − tk (chosen here to be constant for simplicity):

Ld(qk, qk+1) ≈
∫ tk+1

tk

L(q, q̇) dt.

Now, the right-hand side integral can be approximated through a
one-point quadrature, i.e., by the length of the interval times the
value of the integrand evaluated somewhere between qk and qk+1
and with q̇ replaced by (qk+1 − qk)/h:

Ld(qk, qk+1, h) = hL
(
(1− α)qk + αqk+1,

qk+1 − qk
h

)
(6)

where α ∈ [0, 1]. For α = 1/2, the quadrature is second-order
accurate, while any other value leads to linear accuracy.

1This term could also be called an action, as it is a time integral of a
Lagrangian; however, just like the term “discrete curvature” in CG refers
to a small local integral of a continuous curvature, we prefer this naming
convention.

Discrete Stationary Action Principle Given the discrete La-
grangian, the discrete action functional becomes simply a sum:

Sd :=Sd({qi}i=0..N )=
N−1∑

k=0

Ld(qk, qk+1)≈
∫ b

a

L(q, q̇) dt=S(q).

Taking fixed-endpoint variations of this discrete action Sd, we ob-
tain:

δSd =

N−1∑

k=0

[
D1Ld(qk, qk+1) · δqk +D2Ld(qk, qk+1) · δqk+1

]
,

whereD1L (resp.,D2L) denotes the partial derivative with respect
to the first (resp., second) arguments of L. Reindexing the right-
most terms, and using the fixed endpoint condition δq0 = δqN = 0,
one gets:

δSd =

N−1∑

k=1

[
D1Ld(qk, qk+1) +D2Ld(qk−1, qk)

]
· δqk.

Setting this variation equal to 0 and noting that each δqk is arbitrary,
we arrive at the discrete Euler-Lagrange (DEL) equations

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0. (7)

Notice that this condition only involves three consecutive posi-
tions. Therefore, for two given successive positions qk and qk+1,
Eq. (7) defines qk+2. That is, these equations of motion are actually
the algorithm for an integrator! And since the DEL equations de-
rive from the extremization of a discrete action, such an algorithm
enforces the variational aspect of the motion numerically.

Link to Previous Numerical Schemes Let us go back to the
pendulum case. For this system, the Lagragian (kinetic energy mi-
nus potential energy) is:

L(q, q̇) =
1

2
L2q̇2 + gL cos(q).

First, the user can convince her/himself that the Euler-Lagrange
equation is indeed, Eq. (1) through a simple derivation. Second,
it is also a simple (yet, interesting) exercise to verify that the sym-
plectic Euler integrator used earlier results from the DEL equations
just described, for the particular choice of α = 0 in the quadrature
rule defined in Eq. 6.

5.3 Update Rule in Phase Space

In mechanics, the initial conditions are typically specified as a po-
sition and a velocity or momentum rather than two positions, there-
fore it is beneficial to write (7) in a position-momentum form [West
2003]. To this end, define the momentum at time tk to be:

pk := D2Ld(qk−1, qk) = −D1Ld(qk, qk+1)
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where the second equality holds due to (7). The position-
momentum form of the variational integrator discussed above is
then given by:

pk = −D1Ld(qk, qk+1) , pk+1 = D2Ld(qk, qk+1). (8)

For (qk, pk) known, (8)(left) is an (often implicit) equation whose
solution gives qk+1. qk+1 is then substituted in (8)(right) to find
pk+1. This provides an update rule in phase space.

5.4 Adding Dissipation

In case of forcing and/or dissipation, the discrete action can be mod-
ified by adding the non-conservative force term and using the dis-
crete Lagrange-d’Alembert principle [Marsden and West 2001]:

δSd +
N∑

k=0

(
F−d (qk, qk+1) · δqk + F

+
d (qk, qk+1) · δqk+1

)
=0.

where F−d (qk, qk+1) and F+d (qk, qk+1) are discrete external forces
acting respectively on the right of qk and on the left of qk+1.
In other words, F−d (qk, qk+1) · δqk + F

+
d (qk, qk+1) · δqk+1 can

be seen as a two-point quadrature of the continuous forcing term∫ tk+1
tk

F · δq dt. The forced discrete Euler-Lagrange equations can
be expressed in a convenient, position-momentum form as follows:

pk = −D1Ld(qk, qk+1)− F−d (qk, qk+1) ,
pk+1 = D2Ld(qk, qk+1) + F

+
d (qk, qk+1).

This variational treatment of energy decay, despite its simplicity,
has also been proven superior to the usual time integration schemes
that often add numerical viscosity to get stability [West 2003].

5.5 Last Words

Variational integrators often perform better than their non-
variational counterparts because they preserve the underlying
geometry of the physical system. This has two important conse-
quences. First, the integrators are guaranteed to be symplectic,
which in practice will result in excellent energy behavior, rather
than perpetual damping or blowing up. Second, they are also guar-
anteed to preserve discrete momenta of the system. As a conse-
quence, simulations and animations using these integrators usually
have great physical and visual fidelity with low computational cost.
Caveat: The reader may be misled into thinking that our scheme
does not require the typical Courant-Friedrichs-Levy (CFL) condi-
tion (or equivalent) on the time step size. This is, of course, untrue:
the same usual theoretical limitations of explicit schemes are still
valid for symplectic explicit schemes. However, we can easily de-
sign symplectic implicit schemes that do not share this particular
limitation, generally allowing for much larger time steps. Finally,
we can make them of arbitrarily higher order by simply improving
the quadrature rule used to convert the continuous Lagrangian into
a discrete Lagrangian.
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