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Overview
Putting DEC to good use

Fluids, fluids, fluids
geometric interpretation of classical models
discrete geometric interpretation

new geometry-based integration technique 

Quadrangle Meshing
discrete notion of harmonicity
practical method to directly create quads
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Part I

Computational Fluids
with DEC
based on work with

Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder
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Fluid Models (I)
Euler Equations

inviscid fluids (not viscous)
incompressible
non-linear PDE, with linear constraint

pressure

velocity

momentum eq.

body forces
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Fluid Models (I)
Euler Equations

inviscid fluids (not viscous)
incompressible
non-linear PDE, with linear constraint

momentum eq.

mass eq.
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Fluid Models (II)
Navier-Stokes Equations

only change: viscosity
coefficient 

loss of total energy during motion
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“Geometry” of Fluids?
Euler equations seem clear

advection + div-free projection ad infinitum
Stam’s Stable Fluids do this wonderfully well
numerous follow-up work (Fedkiw et al.)

but what does it mean, geometrically?
“total energy” is rather unintuitive
is there a notion of momentum preservation?

Yes
but of course, we need to massage the PDE 
so as to reveal the geometric structure
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Geometry Revealed
Pressure disappears when we take the curl:

vorticity measures the “spin” of a parcel
vorticity is “advected” along the flow
the circulation around any 

closed loop is constant
as it gets advected (by Stokes)
− known as Kelvin’s theorem
− call it preserv. of angular momentum if you want
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Geometry Revealed
So we know:
Integral of vorticity constant on advected sheet
Additionally, ω defines u

if we ignore complex topology for a moment
because u is divergence free!

Vorticity is the only real variable here
and Kelvin’s is a defining property
(Navier-Stokes: loss along the way)
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Towards a Proper Discretization
Domain discretization = simplicial complex

fluxes through faces for velocity
intrinsic (coordinate-free) and eulerian

» reminiscent of staggered grids…

net flux for divergence
− what comes in…must come out

flux spin for vorticity
Torque created on a “paddle wheel”

valid for any grid…
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Enter Discrete Exterior Calculus
Need for proper link btw flux, vorticity, div

hopefully matching differential counterparts

to create a discrete differential structure
i.e., structure-preserving discretization

Fortunately, that’s DEC
we know how to do all that, right??

flux = 2-form

div = exterior derivative of flux

curl =            of fluxd
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Divergence Operator
Simply d of 2-form

summing face values of tets

returning values in tets

point-based
scalar field

cell-based
scalar field

edge-based
vector field

face-based
vector field

cell-based
scalar field

point-based
scalar field

face-based
vector field

edge-based
vector field
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Curl Operator
Curl requires going to the dual

from faces to dual edges first

then d (sum of dual edge values)

then back onto primal edges
point-based
scalar field

cell-based
scalar field

edge-based
vector field

face-based
vector field

cell-based
scalar field

point-based
scalar field

face-based
vector field

edge-based
vector field
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Laplacian Operator

Fro Navier-Stokes, Laplacian needed
from faces to faces

d   d        d   d +=Δ

point-based
scalar field

cell-based
scalar field

edge-based
vector field

face-based
vector field

cell-based
scalar field

point-based
scalar field

face-based
vector field

edge-based
vector field

∇ ×∇ •∇

×∇ ∇•∇

Try it for 0-forms at home:
you’ll get the cot formula…
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Integrating Equations of Motion

We have all the computational set-up
But how do we integrate the motion?

Through preserving important structures?
Circulation/vorticity preservation

Crucial for visual impact
volutes in smoke

vortices in liquids
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Discrete Kelvin’s Theorem
Simple way to integrate Euler equations:

For each 1-simplex
backtrack local loop
in current velocity field

deduce new circulation
− i.e., new discrete vorticity

Find new velocity field
simple Poisson equation
−
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Discrete Kelvin’s Theorem
Guarantees circulation preservation…

for any discrete loop!
big loop = union of small ones
… even on curved spaces

Difference with Stable Fluids?
trace back integrals, not point values 
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Results
New method

exact discrete vorticity preservation
arbitrary simplicial meshes

see also [Feldman et al. ’05, Klingner et al ’06]
everything is intrinsic
basic operators very simple (super parse)
great flows for small meshes!

computationally efficient even on coarse mesh
no need for millions of vortex particles
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Channel
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Smoking Bunny

7k vertices, 32k tets; 0.45s 
per frame on PIV (3GHz)
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Merging Vortices
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Movie
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Part II

Quad Meshing
with DEC
based on work with

Yiying Tong, Pierre Alliez, David Cohen-Steiner
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Quadrangulations
Needed in CAGD, Reverse Engineering

Ubiquitous (tensor-product nature)
Modeling anisotropy/symmetries 
FEM, texture atlasing

But global topology constraints…

A Variety of Requirements:
Isotropy vs anisotropy
Orthogonality, Alignment 
Regularity, Sizing
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Quad Meshes: Reverse Engineering

For a local patch of quadrangulation
induce natural (u,v) parametrization
Edges: integer-valued isocurves of u/v
“Nice” mesh ≈ square mesh in certain metric

Cauchy-Riemann equations
using language of differential form, this is

Thus, u and v are both harmonic (Laplacian=0)
du and dv too! Cool, DEC seems perfect for that

one-forms
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Methods for Quadrangulations
Among many:

clustering/Morse [Boier-Martin et al. 03, Carr et al. 06]

curvature lines [Alliez et al. 03, Marinov/Kobbelt 05]

isocontours lDong et al. 04]

two continuous potentials
(much) more robust than streamlines

periodic global param (PGP) [Ray et al. 06]

Pbs: PGP non linear + no real control

What about using discrete forms?
global conformal param [Gu/Yau 03]
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Problems, Problems…
Solving for two continuous potentials (u,v) 

with gradients fields satisfying CR eqs
Alas, singularities unavoidable  

either poles
or line singularity

T-junctions…
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Problems, Problems…
Solving for two continuous potentials (u,v) 

with gradients fields satisfying CR eqs
Alas, singularities unavoidable  

either poles
or line singularity

T-junctions…

Can we find a better way?
Only requirement: continuity of 1-forms
so we can actually use discontinuous (u,v)!

[Yiying Tong et al. 2006]
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Discontinuous Potentials
“Tweaked” Laplacian

continuity of 1-form induces:

generate smooth fields modulo the jump!

Similarly,

NN --

NN ++
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Discontinuous Potentials
“Tweaked” Laplacian

continuity of 1-form induces:

generate smooth fields modulo the jump!

Similarly,

NN --

NN ++
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Simple Example of Tweaked Δ

v (continuous)

u (discontinuous)

Once isolines of u and v are extracted:
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Possible Discontinuities
Only three different cases:

only way to guarantee pure quads

in the 3 cases, just a tweak of the Laplacian
still only a linear system to solve!
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Examples
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Example: Pure-Quad Bunny
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More Results
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Advantages of DEC
Foundations of discrete forms powerful

good grasp on vector field singularities
control of “irregular valences”
link with “cone singularities” [Kharevych et al. 06]

still just a linear system to solve
no need for well-tailored cuts
provides parameterization too!
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Take-Home Message
Don’t Arbitrarily Discretize!

discretize geometric structures
PDEs often hide these structures

uncover the nature of the variables involved
usually, natural locations on mesh

turn the crank with some DEC tools….

Next
circles may be the right discrete geometry!

conformal geometry


