Applications of DEC:
Fluid Mechanics and Meshing

Mathieu Desbrun

Applied Geometry Lal

Discrete Differential Geometry: An Applied Introduction
ACM SIGGRAPH 2006 Course

Overview
Putting DEC to good use
Fluids, fluids, fluids

0 geometric interpretation of classical models

o discrete geometric interpretation
> new geometry-based integration technique

Quadrangle Meshing

o discrete notion of harmonicity
o practical method to directly create quads
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Part 1

Computational Fluids
with DEC
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Fluid Models ()
Euler Equations

=const| Ju
Y 4V um Vot
Vu=0 body forces

o inviscid fluids (not viscous)
0 incompressible
0 non-linear PDE, with linear constraint
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Fluid Models ()

Euler Equations

o wV)u=—Vp+f
V=0

0 inviscid fluids (not viscous)
0 incompressible
0 non-linear PDE, with linear constraint
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Fluid Models (IT)

Navier-Stokes Equations

a
l+(u~V)u:—Vp—|—f—VALt

ot
Vu=0
o only change: viscosity

> coefficient v
0 loss of total energy during motion
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“Geometry” of Fluids? *+viu--v

Euler equations seem clear
0 advection + div-free projection ad infinitum
> Stam’s Stable Fluids do this wonderfully well
» numerous follow-up work (Fedkiw et al.)
0 but what does it mean, geometrically?
> “total energy” is rather unintuitive
> is there a notion of momentum preservation?
Yes
o but of course, we need to massage the PDE
0 so as to reveal the geometric structure
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Geometry Revealed

So we know:
Integral of vorticity constant on advected sheet

Additionally, o defines u
> if we ignore complex topology for a moment
> u=Vx (A" 'o) because uis divergence free!

Vorticity is the only real variable here
and Kelvin’s is a defining property 0
(Navier-Stokes: loss along the way) Q
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Geometry Revealed V=

Pressure disappears when we take the curl:
%_0) +Lo=0 o=V xu (vorticity)
t
Vu=0 ull oD

0 vorticity measures the “spin” of a parcel
(1)

o vorticity is “advected” along the flow
o the circulation around any
closetl loop is constant

ro= fud [ as it gets advected (by Stokes)

- known as Kelvin’s theorem Zieh
- callit preserv. of angular momentum if you want
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Towards a Proper Discretization

Domain discretization = simplicial complex

o fluxes through faces for velocity

> intrinsic (coordinate-free) and eulerian

» reminiscent of staggered grids. ..
o net flux for divergence
- What comes in..must come out

o flux spin for vorticity

» Torque created on a “paddle wheel”

o valid for any grid...
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Enter Discrete Exterior Calculus

Need for proper link btw flux, vorticity, div
0 hopefully matching differential counterparts
0 to create a discrete differential structure
> ie., structure-preserving discretization
0 Fortunately, that's DEC
> we know how to do all that, right??

> flux - 2-form

> div = exterior derivative of flux
> curl = xdx of flux
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Divergence Operator

Simply d of 2-form
0 summing face values of tets

0 returning values in tets

V. cell-based

scalar field,

V x

point-based % edge-based face-based

scalar field vector field vector field
* *
cell-based V. facebased Vx  edgebased V  point-based

scalar field <= vector field <= vector field <+ scalar field
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Curl Operator

Curl requires going to the dual
o from faces to dual edges first

0 then d (sum of dual edge values)
0 then back onto primal edges
pointhased  V edgebased VX facebased Ve cell-based
—_—

—_— T —

scalar field vector field vector field scalar field
* % | ii E) * * *
.
cell-based V. facebased Vx  edge-based point-based

scalar field <+ vector field <+ vector field < scalar field
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%du-v)u:—\/p AU
C

Laplacian Operator

Fro Navier-Stokes, Laplacian needed
o from faces to faces

G . .
. Try it for O-forms at home
=

you'll get the cot formula.

A=dxd* + xd=*d

Point bascd % edge-based V% acehasea~, Vo cell-based
scalar field vector field vector field scalar field
* * * *

cell-based V. facebased Vx  edgebased V  point-based
scalar field <= vector field <+ vector field <+ scalar field
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Integrating Equations of Motion

We have all the computational set-up
o But how do we integrate the motion?

Through preserving important structures?
o Circulation/vorticity preservation

"
’ y/

0 Crucial for visual impact
» volutes in smoke

> vortices in liquids
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Discrete Kelvin’s Theorem

Simple way to integrate Euler equations:

o For each 1-simplex o -

> backtrack local loop
in current velocity field

> deduce new circulation
- ie., new discrete vorticity /O’:
0 Find new velocity field Zih)
> simple Poisson equation
- u=vx(alo)
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Discrete Kelvin’s Theorem

Guarantees circulation preservation...
for any discrete loop!
o big loop = union of small ones
0 ...even on curved spaces

4 {

4 Difference with Stable Fluids? (NEE=S
> trace back integrals, not point values
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Results

New method

0 exact discrete vorticity preservation

o arbitrary simplicial meshes
> see also [Feldman et al.’03, Klingner et al "06]

o0 everything is intrinsic

0 basic operators very simple (super parse)

o great flows for small meshes!
» computationally efficient even on coarse mesh
> no need for millions of vortex particles
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Channel
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Smoking Bunny

7k vertices, 32k tets; 0.45s
per frame on PIV (3GHz)
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Merging Vortices

0 @ e s 10
time (seconds)
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Movie
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Part 11

Quad Meshing
with DEC

Discrete Differential Geometry: An Applied Introduction
ACM SIGGRAPH 2006 Course 23

Quadrangulations

Needed in CAGD, Reverse Engineering
o Ubiquitous (tensor product nature) :
> Modeling anisotropy/symmetries
» FEM, texture atlasing
0 But global topology constraints...

A Variety of Requirements:
o Isotropy vs anisotropy

0 Orthogonality, Alignment
o Regularity, Sizing
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Quad Meshes: Reverse Engineering

For a local patch of quadrangulation ,, u
0 induce natural (u,v) parametrization
u Edges: integer-valued isocurves of u/v
0 “Nice” mesh ~ square mesh in certain metric
(Vu, Vv) =0 (Vu, Vu) = (Vu, Vo).
» Cauchy-Riemann equations
> using language of differential form, this is

(oo T du = xdv

0 Thus, u and v are both harmonic
> du and dv too! Cool, DEC seems perfect for that
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Problems, Problems...

Solving for two continuous potentials (u,v)
u with gradients fields satistying CR eqs
Alas, singularities unavoidable
o either poles

o or line singularity
» T-junctions...
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Discontinuous Potentials

“Tweaked” Laplacian

o continuity of 1-form induces:
du” =du™ VO

Methods for Quadrangulations

Among many:
o clustering/Morse [Boicr Martin et al. 03, Carr et al. 06]
0 curvature lines [Allicz et al. 03, Marinov/Kobbelt 05] ; '

L10 1SOCONtours nong et al. 04]

. > two continuous potentials

> (much) more robust than streamlines

o periodic global param (PGP) [ray et 0]

> Pbs: PGP non linear + no real control

What about using discrete forms?
o global conformal param [Gu/yau 03]
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Problems, Problems...

Solving for two continuous potentials (u,v)
o with gradients fid
Alas, singularities una
o either poles
o or line singularity
» T-junctions...

Can we find a better way?
0 Only requirement: continuity of 1-forms
0 so we can actually use discontinuous (u,v)!
> |Yiying Tong et al. 2006
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= u = u+ +Us e, u~ — U+ =Us; Mo
Similarly, v~ — ot = Vs

>~ (cotarj + cotBij) (1:’ B ZJ> = > (cotay; + cotfij) (l‘ie)
JEN (D) ) jenti) ’

generate smooth fields modulo the jump!
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Discontinuous Potentials

“Tweaked” Laplacian

0 continui
du o)
= u = ut - =Us N0

=Vs

» (cotajj + co
JEN (i)

generate smooth fields modulo the jump!

i + cotBi;) (l‘i:)
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Simple Example of Tweaked A

u (discontinuous)

/
v (continuous) /
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Once isolines of u and v are extracted:

Possible Discontinuities

Only three different cases:

o only way to guarantee pure quads

0 in the 3 cases, just a tweak of the Laplacian
» still only a linear system to solve!
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Examples
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Example: Pure-Quad Bunny
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More Results
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Advantages of DEC

Foundations of discrete forms powerful
o good grasp on vector field singularities
» control of “irregular valences”
> link with “cone singularities”
o still just a linear system to solve
o no need for well-tailored cuts
0 provides parameterization too

7
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Take-Home Message

Don’t Arbitrarily Discretize!
o discretize geometric structures
» PDEs often hide these structures
0 uncover the nature of the variables involved
> usually, natural locations on mesh
o turn the crank with some DEC tools....

Next
o circles may be the right discrete geometry!
» conformal geometry

Discrete Differential Geometry: An Applied Introduction
ACM SIGGRAPH 2006 Course 37




