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Big Picture
Deriving a whole Discrete Calculus

you need first a discrete domain
will induce the notion of chains
− discrete representation of geometry

then discrete “differential” operators
applied to our discrete geometric set-up
defined through cochains (discrete forms)

Scared?
Don’t be:  just numbers on mesh elmts!
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Part I

Discrete 
Geometric Setup
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Discrete Setup
Starting with a discrete domain

can be thought of as “approximation”
cell decomposition of smooth manifold

Nice simplicial mesh
vertex, edge, triangles, …
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Discrete Setup
Starting with a discrete domain

can be thought of as “approximation”
cell decomposition of smooth manifold

Nice simplicial mesh
vertex, edge, triangles, …

2D domain
curved 2D domain
3D domain
or even 4D and more!
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Quick Refresher Course
Notion of k-simplex

non-degenerate convex hull of (k+1) vertices

boundary of simplex?

simplicial complex
your typical triangle mesh/tet mesh

two k-simplices only intersect thru a common (k-1)-face

0-simplex 1-simplex 2-simplex 3-simplex

∂ =∂ = ∂ =
-1

+1 ∂ =
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Discrete Subdomains
How to define geometric subsets?

again, the only “medium” we have is the mesh
simple example:
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Discrete Subdomains
How to define geometric subsets?

again, the only “medium” we have is the mesh
simple example:

how to define this region?
“voxelized” is ok,

but not great

heard about antialiasing?
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Notion of Chains
Allowing linear combination of simplices

assign coefficients to simplices
not just 0 or 1
it’s called a chain
- we’ve seen it before:

think boundary of an edge
Definition:

k-chain = one value per k-simplex
think “column vector”
− … or simply an array of values in CS terms

∂ =
-1

+1
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Chains and Boundaries
Boundary of a chain is a chain:

chains allow 
“sub-simplex” accuracy
anti-aliased version…

chains extension of 
barycentric coordinates!

notion of homology

v1

v2 v0

x
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Notion of Dual Complex
Associate to each k-simplex a (n-k)-cell

connectivity of mesh induces another mesh
“Voronoi” diagram

Chains are defined as well on dual mesh!

Primal k-simplex

Dual (n-k)-cell

Dual
Primaldual of k-simplex,

so same cardinality

Discrete Differential Geometry: An Applied Introduction
ACM SIGGRAPH 2006 Course 14

Part II

Turning our Mesh into a 
Computational Structure
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Intrinsic Calculus on Meshes
Ready to bootstrap a discrete calculus

using only values on simplices
“measurements” in the domain

preview:

deep roots in mathematics
exterior calculus, algebraic topology

but very simple to implement and use

point-based
scalar field

cell-based
scalar field

edge-based
vector field

face-based
vector field

∇ ×∇ •∇
ddd
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Discrete Differential Quantities
Mentioned repeatedly in the talks before…

they “live” at special places, as distributions
Gaussian curvature at vertices ONLY
mean curvature at edges ONLY

they can be handled through integration
integration calls for k-forms (antisymmetric tensors)

− objects that beg to be integrated  (ex:                )               
k-forms are evaluated on kD set
− 0-form is evaluated at a point, 

1-form at a curve, etc…
− what you can “measure”

∫ dxxf )(

that’s a 1-form
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nr

Forms You Know For Sure
Digital Images: 2-forms

incident flux on sensors (W/m2)
“hmm, looks like a chain, no?” (almost)

Magnetic Field B: 2-form
only measurement possible: flux!
any physical flux is a 2-form too

Electrical Force E: 1-form 
any physical circulation is a 1-form too

notion of pseudo forms—see notes

∫∫ dAnB rr.

∫ dltE
rr
. t

r
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Exterior Calculus of Forms
Foundation of calculus on smooth manifolds

Historically, purpose was to extend div/curl/grad
Poincaré, Cartan, Lie, …

Basis of differential and integral computations
highlights topological and geometrical structures
modern diff. geometry, Hodge decomposition, …

A hierarchy of basic operators are defined:
d, *, ∧, b, #, iX , LX

See [Abraham, Marsden, Ratiu] , ch. 6-7
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Discrete Forms? 
Idea: Sampling Forms on Each Simplex

extends the idea of point-sampling of fcts

“sample” (i.e., integrate) a k-form on k-cells
the rest is defined by linearity

ex:  if we know the flux on each edge,
flux over the boundary of triangle

is just the sum of the fluxes a+b+c

ab

c
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Discrete Forms As Cochains
Discrete k-form = values on each kD set

primal forms on simplices, dual forms on cells
Not a chain! Think “row vector” this time

in CS terms: k-form = array of values too

These discrete forms are cochains
in math terms: chains pair with cochains

(natural pairing = integration)
if chain c valued       on     & form     valued        on     , 
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Notion of Exterior Derivative
Stokes/Green/{…} theorem:

d and ∂ are dual  
Implementation? 

As simple as an incidence matrix!
ex: d(1-form)=incidence matrix of edges & faces
Bean counting: array[|F|x|E|] x array|E| = array|F|

∫ −=
b

a

aFbFdF )()(

a bdF
turns an integral 

into a boundary integral

∂ =

d     =ab

c

a+b+c

→ → →ddd →→→

∂∂∂
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Exterior Derivative
Let’s try

No “metric” needed! (no size measurement)

Try d, then d again on an arbitrary form…
zero; why?
because
good: div(curl)=curl(grad)=0 automatically

value?

∂ (         )=

Careful w/ orientation!

-2

-1
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Hodge Star
Take forms to dual complex (and vice-versa)

switch values btw primal/dual

“diagonal” hodge star

again, a simple (diagonal) matrix

now the metric enters…
Hodge star defines accuracy

common 
“average” value
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Discrete deRham Complex
Discrete calculus through linear algebra:

simple exercise in matrix assembly
all made out of two trivial operations:

summing values on simplices (d/∂)
scaling values based on local sizes (  )

point-based
scalar field

cell-based
scalar field

edge-based
vector field

face-based
vector field

cell-based
scalar field

point-based
scalar field

face-based
vector field

edge-based
vector field

∇ ×∇ •∇

×∇ ∇•∇
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Interpolating Discrete Forms
Whitney basis functions to interpolate forms

0-forms (functions)
linear “hat” functions

1-forms (edge elements!)
Whitney forms:
basis of 1-forms since              0 on edges ≠ (i,j)

2-forms: face elmts
3-forms: constant per tet

Higher order bases? See [Ke Wang et al. 2006]

think ∇
for computations

also a fct of   and             φ φ∇
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What We’ll Be Able To Do
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Other Related Research Areas
Geometric Algebra
Mimetic Differencing

same spirit, less geometry
Finite {Element|Volume|Differences}
Discrete Mechanics

what about time discretization now?
principle of least-action is crucial 

motion is a geodesic if we use action as “metric”
Last talk of the day

Discrete Differential Geometry: An Applied Introduction
ACM SIGGRAPH 2006 Course 28

Take-Home Message
Geometric Approach to Computations

discrete setup acknowledged from the get-go
choice of proper habitat for quantities
whole calculus built using only:

boundary of mesh elements 
scaling by local measurements

preserving structural indentities
they are not just abstract concepts:

they represent defining symmetries
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Join the Discrete World
Wanna know more about DEC?

Chapter in course notes
“Discrete Differential Forms”

by MD, Eva Kanso, Yiying Tong
much more details and pointers to literature:
− homology, cohomology, Hodge decomposition
− living document… please help us improving it

Another chapter in the course notes:
“Build Your Own DEC at Home”

by Sharif Elcott & Peter Schröder


