Big Picture

Deriving a whole *Discrete Calculus*
- you need first a *discrete domain*
 - will induce the notion of *chains*
 - discrete representation of geometry
- then *discrete “differential” operators*
 - applied to our discrete geometric set-up
 - defined through *cochains* (discrete forms)

Scared?
- Don’t be: just numbers on mesh elmts!

Part I

Discrete Geometric Setup

Discrete Setup

Starting with a *discrete domain*
- can be thought of as “approximation”
 - cell decomposition of smooth manifold

Nice simplicial mesh
- vertex, edge, triangles, ...
- 2D domain

Discrete Setup

Starting with a *discrete domain*
- can be thought of as “approximation”
 - cell decomposition of smooth manifold

Nice simplicial mesh
- vertex, edge, triangles, ...
- 2D domain
- curved 2D domain
Discrete Setup
Starting with a discrete domain
- can be thought of as “approximation”
 - cell decomposition of smooth manifold
Nice simplicial mesh
- vertex, edge, triangles, ...
- 2D domain
- curved 2D domain
- 3D domain
- or even 4D and more!

Quick Refresher Course
Notion of k-simplex
- non-degenerate convex hull of (k+1) vertices
 - 0-simplex
 - 1-simplex
 - 2-simplex
 - 3-simplex
- boundary of simplex?
 - $\partial \sigma = \sum_{j} \beta_j \sigma_j$
- simplicial complex
 - your typical triangle mesh/tet mesh
 - two k-simplices only intersect thru a common (k-1) face

Discrete Subdomains
How to define geometric subsets?
- again, the only “medium” we have is the mesh
 - simple example:

Notion of Chains
Allowing linear combination of simplices
- assign coefficients to simplices
 - not just 0 or 1
 - it’s called a chain
 - we’re summing up like the sum of an edge
Definition:
- k-chain = one value per k-simplex
 - think “column vector”
 - ... or simply an array of values in CS terms

Chains and Boundaries
Boundary of a chain is a chain:
$\partial \kappa = \sum_{\sigma_j \in K \setminus \kappa} \sigma_j$
- chains allow
 - “sub-simplex” accuracy
 - anti-aliased version...
- chains extension of barycentric coordinates!
- notion of homology
Notion of Dual Complex

Associate to each k-simplex a (n-k)-cell
- connectivity of mesh induces another mesh
- "Voronoi" diagram

Chains are defined as well on dual mesh!

Intrinsic Calculus on Meshes

Ready to bootstrap a discrete calculus
- using only values on simplices
 - "measurements" in the domain
- preview:
 - pre bond scalar field \(\frac{\nabla}{d} \)
 - edge bond vector field \(\frac{\nabla \times}{d} \)
 - face bond vector field \(\frac{\nabla}{d} \)
 - cell bond scalar field
- deep roots in mathematics
 - exterior calculus, algebraic topology
- but very simple to implement and use

Forms You Know For Sure

Digital Images: 2-forms
- incident flux on sensors (W/m²)
- "hmm, looks like a chain, no?" (almost)

Magnetic Field \(\mathbf{B} \): 2-form
- only measurement possible: flux!
- any physical flux is a 2-form too

Electrical Force \(\mathbf{E} \): 1-form
- any physical circulation is a 1-form too

Discrete Differential Quantities

Mentioned repeatedly in the talks before...
- they "live" at special places, as distributions
 - Gaussian curvature at vertices ONLY
 - mean curvature at edges ONLY
- they can be handled through integration
 - integration calls for k-forms (antisymmetric tensors)
 - objects that begin to be integrated (ex: \(\int f(x) dx \))
 - k-forms are evaluated on kD set
 - 0-form is evaluated at a point,
 1-form at a curve, etc...
 - what you can "measure"

Exterior Calculus of Forms

Foundation of calculus on smooth manifolds
- Historically, purpose was to extend div/curl/grad
 - Poincaré, Cartan, Lie, ...
- Basis of differential and integral computations
 - highlights topological and geometrical structures
 - modern diff. geometry, Hodge decomposition, ...
- A hierarchy of basic operators are defined:
 - \(d, \wedge, \delta, \partial, \nabla \cdot, \nabla \times \)
- See [Abraham, Marsden, Ratiu], ch. 6-7

Turning our Mesh into a Computational Structure
Discrete Forms?

Idea: Sampling Forms on Each Simplex
- Extends the idea of point-sampling of functions
- "Sample" (i.e., integrate) a k-form on k-cells
- The rest is defined by linearity

\[\int_{\sigma_j} \omega = \sum_{j} \int_{\sigma_j} \omega \]

- Ex: if we know the flux on each edge, flux over the boundary of triangle is just the sum of the fluxes on the edges.

Discrete Forms As Cochains

Discrete k-form - values on each kD set
- Primal forms on simplices, dual forms on cells
- Not a chain! Think "row vector" this time
 - In CS terms: k-form - array of values too

These discrete forms are cochains
- In math terms: chains pair with cochains (natural pairing - integration)
- If chain \(c \) valued \(c[i] \) on \(\sigma_j \), form \(\omega \) valued \(\omega[i] \) on \(\sigma_j \)

\[\langle \omega, c \rangle = \int_{c} \omega = \int \omega = \sum_{j} c[i] \int_{\sigma_j} \omega = \sum_{j} \int_{\sigma_j} \omega[i] \]

Notion of Exterior Derivative

Stokes/Green/... theorem:
\[\int d\omega = \int \omega \]

- \(d \) and \(\partial \) are dual
- Implementation?
 - As simple as an incidence matrix!
 - Ex: \(d(1\text{-form}) \) - incidence matrix of edges & faces

Bean counting: array\([|F|\times|E|]\) x array\(|E| = array\(|F|\]

Exterior Derivative

Let’s try

- No “metric” needed! (no size measurement)
- Try \(d \), then \(d \) again on an arbitrary form...
 - Zero, why?
 - Because \(\partial \circ \partial = 0 \)
 - Good: \(\text{div}(\text{curl}) = \text{curl}(\text{grad}) = 0 \) automatically

Hodge Star

Take forms to dual complex (and vice-versa)
- Switch values btw primal/dual
 \[\ast : \Omega^p \rightarrow \Omega^{n-p} \]
- “Diagonal” hodge star
 \[\frac{1}{\text{vol}\, \sigma^p} \int_{\sigma^p} \ast \omega^p = \frac{1}{\text{vol}\, \sigma^p} \int_{\sigma^p} \ast \omega^p \]
- Again, a simple (diagonal) matrix
- Now the metric enters...
- Hodge star defines accuracy

Discrete deRham Complex

Discrete calculus through linear algebra:
- Simple exercise in matrix assembly
- All made out of two trivial operations:
 - Summing values on simplices \((d/\partial) \)
 - Scaling values based on local sizes \((*) \)
Interpolating Discrete Forms

Whitney basis functions to interpolate forms

- 0-forms (functions)
 - linear “hat” functions
- 1-forms (edge elements)
 - Whitney forms: \(\phi_{ij} = \phi_i \varphi_j - \phi_j \varphi_i \)
 - basis of 1-forms since \(\delta \phi_{ij} = 0 \) on edges \(i,j \)
- 2-forms: face elmts
- 3-forms: constant per tet

Higher order bases? See [Ke Wang et al. 2006]

What We’ll Be Able To Do

Interpolating Discrete Forms

Other Related Research Areas

Geometric Algebra
Mimetic Differencing

- same spirit, less geometry

Finite {Element|Volume|Differences}
Discrete Mechanics

- what about time discretization now?
- principle of least-action is crucial
 - motion is a geodesic if we use action as “metric”
- Last talk of the day

Take-Home Message

Geometric Approach to Computations

- discrete setup acknowledged from the get-go
- choice of proper habitat for quantities
- whole calculus built using only:
 - boundary of mesh elements
 - scaling by local measurements
- preserving structural identities
 - they are not just abstract concepts
 - they represent defining symmetries

Join the Discrete World

Wanna know more about DEC?

- Chapter in course notes
 - “Discrete Differential Forms” by MD, Eva Kanso, Yiying Tong
 - much more details and pointers to literature:
 - homology, cohomology, Hodge decomposition
 - living document... please help us improving it
- Another chapter in the course notes:
 - “Build Your Own DEC at Home” by Sharif Elcott & Peter Schröder