What can we measure?

Eitan Grinspun, Columbia University

What characterizes shape?

- brief recall of classic notions
- how to express in discrete setting?

What structures are preserved?

- Gauss-Bonnet
- Minimal surfaces
- Steiner polynomial

What characterizes shape?

length area
Gaussian curv

 brief recall of classic notions

mean curv.

 how to express in discrete setting?

What structures are preserved?

- Gauss-Bonnet
- Minimal surfaces
- Steiner polynomial

What characterizes shape?

brief recall of ____
 classic notions

 how to express in discrete setting?

What structures are preserved?

- Gauss-Bonnet
- Minimal surfaces
- Steiner polynomial

length area

Gaussian curv

What characterizes shape?

 brief recall of classic notions

 how to express in discrete setting?

What structures are preserved?

- Gauss-Bonnet
- Minimal surfaces
- Steiner polynomial

length area

Gaussian curv

Where do quantities live?

 consider going down parameter lane....

 in the continous setting, pointwise makes sense

Where do quantities live?

 consider going down parameter lane....

$$S(u,v) = (x(u,v), y(u,v), z(u,v))$$

 in the continous setting, pointwise makes sense

Where do quantities live?

 consider going down parameter lane....

$$S(u,v) = (x(u,v), y(u,v), z(u,v))$$

Where do quantities live?

Where do quantities live?

- quantities "live" on vertices, edges, or faces
- total quantity over a mesh neighborhood

Where do quantities live?

- quantities "live" on vertices, edges, or faces
- total quantity over a mesh neighborhood
- wait... isn't living on a vertex a pointwise notion?

Where do quantities live?

- quantities "live" on vertices, edges, or faces
- total quantity over a mesh neighborhood
- wait... isn't living on a vertex a pointwise notion?
- No. Total quantity over a mesh neighborhood.

Tangent Vector

Curve on surface, passing through point

recall:

Tangent, the first approximant

The limiting secant as the two points come together.

Discrete Tangent Vector

Curve on surface, passing through point

recall:

Tangent, the first approximant

The limiting secant as the two points come together.

Tangent Plane

All tangents at P lie on common plane

Gives tangent vector space

Tangent Plane

Vector addition mult. by scalar vector etc.

All tangents at P lie on common plane

Gives tangent vector space

$$g(v,w) = |v||w|\cos\angle(v,w)$$

Length

Angle

in smooth, pointwise setting, the place to shop for "first-order" quantities

$$g(v,w) = |v||w|\cos\angle(v,w)$$

Length

Metric

Angle

$$g(v,w) = |v||w|\cos\angle(v,w)$$

Length

plug in v=w

Angle

$$g(v, w) = |\mathbf{1}| \cdot \mathbf{1} \cdot \cos \angle(v, w)$$

Length

• plug in v=w

Angle

• use lvl=lwl=1

$$g(v,w) = |v||w|\cos\angle(v,w)$$

Length

plug in v=w

Angle

use lvl=lwl=1

Area

parallelogram fixed by length and angle

Length

Angle

Length

• 1 edge

Angle

Length

• 1 edge

Angle

• 2 edges

Length

• 1 edge

Angle

• 2 edges

Area

3 edges (the triangle)

Normal Vector

Perpendicular to tangent plane

must choose orientation

Normal Sections

Special family of curves through point P

- choose any plane containing normal
- find the curve of plane/surface intersection

Normal Sections

Special family of curves through point P

- choose any plane containing normal
- find the curve of plane/surface intersection

Normal Sections

Special family of curves through point P

- choose any plane containing normal
- find the curve of plane/surface intersection

Sectional Curvature

Curvature of normal section

• curvature of surface in tangent direction

recall smooth def'n:

Radius of curvature, $r=1/\kappa$

recall discrete def'n:

Total signed curvature

$$tsc(p) = \sum_{i=1}^{n} \alpha_i$$
 Sum of turning angles.
$$\alpha_1$$

Sectional Curvature

Curvature of normal section

• curvature of surface in tangent direction

recall smooth def'n:

Radius of curvature, $r=1/\kappa$

recall discrete def'n:

Total signed curvature

$$tsc(p) = \sum_{i=1}^{n} \alpha_i$$
 Sum of turning angles.
$$\alpha_1$$

Principal Curvatures

Principal Curvatures

Caution smooth case only

Experiment:

rotate plane about normal,

plot sectional curvature

Principal Curvatures

Cautionsmooth
case only

Elementary symmetric functions of κ_1 , κ_2

- Gaussian curvature $K = \kappa_1 \kappa_2$
- mean curvature $H = \kappa_1 + \kappa_2$

Mean & Gaussian Curvature

Elementary symmetric

Gaussian and mean curvatures

- Gaussian cur(Huand K)1K2
- mean curfully specify all sectional curvatures at P

Mean & Gaussian Curvate

Caution smooth case only

Elementary symmetric functions of κ_1 , κ_2

- Gaussian curvature $K = \kappa_1 \kappa_2$
- mean curvature $H = \kappa_1 + \kappa_2$

Mean & Gaussian Curvate

Caution smooth case only

Elementary symmetric functions of κ_1 , κ_2

- Gaussian curvature $K = \kappa_1 \kappa_2$
- mean curvature $H = \kappa_1 + \kappa_2$

How to apply these pointwise definitions on a triangle mesh?

- we don't have a smooth surface
- trouble at every corner (try evaluating H²)

Mean & Gaussian Curvate

Caution smooth case only

Elementary symmetric functions of κ_1 , κ_2

- Gaussian curvature $K = \kappa_1 \kappa_2$
- mean curvature $H = \kappa_1 + \kappa_2$

How to apply these pointwise definitions on a triangle mesh?

- we don't have a smooth surface
- trouble at every corner (try evaluating H²)

Solution: look for key properties of K and H

$$K_p = \lim_{A \to 0} \frac{{}^{A}G}{A}$$

recall:

Gauß map, $\widehat{\mathbf{n}}(\mathbf{x})$

Point on curve maps to point on unit ci

Preserve Gauss-Bonnet Theorem

Notion of integrated Gauss curvature as area of region on unit sphere

Gauss-Bonnet Theorem

Preserv recall: ss-Bonnet Theorem

Notion area

Ga

Turning number theorem

For a closed curve, the integral of curvature is an integer multiple of 2π .

Preserve Gauss-Bonnet Theorem

Notion of integrated Gauss curvature as area of region on unit sphere

Gauss-Bonnet Theorem

$$2\pi\chi = \int_S \kappa_1 \kappa_2 \, dA = \int_S K \, dA$$

$$2-2g$$
 for closed, oriented surface
$$|f|-|e|+|v|$$
 for a simplicial complex

Gaussian Curvature
$$K_p = \lim_{A \to 0} \frac{A_G}{A}$$

Gaussian Curvature
$$K_p = \lim_{A \to 0} \frac{A_G}{A}$$

On a mesh

can't take limit... but integral still makes sense

Gaussian Curvature
$$K_p = \lim_{A \to 0} \frac{A_G}{A}$$

- can't take limit... but integral still makes sense
- apply Gauss map to vertex neighborhood
 - each face normal maps to a point

Gaussian Curvature
$$K_p = \lim_{A \to 0} \frac{A_G}{A}$$

- can't take limit... but integral still makes sense
- apply Gauss map to vertex neighborhood
 - each face normal maps to a point
 - each edge maps to an arc

$$K_p = \lim_{A \to 0} \frac{A_G}{A}$$

- can't take limit... but integral still makes sense
- apply Gauss map to vertex neighborhood
 - each face normal maps to a point
 - each edge maps to an arc
 - vertex neighborhood maps to spherical polygon

$$K_p = \lim_{A \to 0} \frac{A_G}{A}$$

- can't take limit... but integral still makes sense
- apply Gauss map to vertex neighborhood
 - each face normal maps to a point
 - each edge maps to an arc
 - vertex neighborhood maps to spherical polygon
- our task: compute area of spherical polygon

Area of spherical polygon

$$A = (2-n)\pi + \sum_{i} \beta_{i}$$

Area of spherical polygon

$$A = (2-n)\pi + \sum_{i} \beta_{i}$$

Area of spherical polygon

$$A = (2 - n)\pi + \sum_{i} \beta_{i}$$

total Gauss curvature at vertex

Area of spherical polygon

$$A = (2 - n)\pi + \sum_{i} \beta_{i}$$

total Gauss curvature at vertex

where do I find β_i on my mesh?

Area of spherical polygon

$$A = (2-n)\pi + \sum_{i} \beta_{i}$$

Area of spherical poly π

$$A = (2-n)\pi + \sum_{i=1}^{n} \beta_i$$

Area of spherical poly π

$$A = (2-n)\pi + \sum \beta_i$$

$$A = (2 - n)\pi + n\pi - \sum_{i=1}^{n} \alpha_{i}$$

Area of spherical poly π

$$A = (2-n)\pi + \sum_{i} \beta_{i}$$

$$A = (2 - n)\pi + n\pi - \sum_{i=1}^{n} \alpha_{i}$$

$$A = 2\pi - \sum_{i}^{n} \alpha_{i}$$

Area of spherical poly π

$$A = (2 - n)\pi + \sum \beta_i$$

$$A = (2 - n)\pi + n\pi - \sum_{i=1}^{n} \alpha_i$$

$$A = 2\pi - \sum_{i}^{n} \alpha_{i}$$

total Gauss curvature at vertex

Gauss-Bonnet satisfied exactly

Gauss-Bonnet satisfied exactly

Gauss-Bonnet satisfied exactly

$$2\pi\chi = \int_{S} \kappa_{1}\kappa_{2} dA = \int_{S} K dA$$
If I - | e| + | v |

Gauss-Bonnet satisfied exactly

$$2\pi\chi = \int_{S} \kappa_{1}\kappa_{2} dA = \int_{S} K dA$$
If |-|e|+|v|
crete

Gauss-Bonnet satisfied exactly

Discrete Gauss-Bonnet

Gauss-Bonnet satisfied exactly

Gauss-Bonnet

$$K_i = 2\pi - \sum_{t_{ijk}} \alpha_{jk}$$

$$\sum_{i} K_{i} = 2\pi(V - F/2) = 2\pi(F - 3F/2 + V) = 2\pi\chi$$

Discrete Gauss-Bonnet

Gauss-Bonnet satisfied exactly

Gauss-Bonnet

Discrete Gauss-Bonnet

Gauss-Bonnet satisfied exactly

Gauss-Bonnet

in discrete setting,

Ifl-lelit's easy to prove Gauss-Bonnet

crete

$$K_i = 2\pi - \sum_{t_{ijk}} \alpha_{jk}$$

 $\sum_{i} K_{i} = 2\pi(V - F/2) = 2\pi(F - 3F/2 + V) = 2\pi\chi$ face angles sum to π

Gaussian Curvature

Intrinsic curvature

- sees only in-plane angles
- does not depend on embedding

Discrete setting

- only pedestrian calculations required to evaluated, and to prove Gauss-Bonnet
- associated to vertex neighborhood

think total Gauss curvature near vertex

Mean Curvature $(\kappa_1 + \kappa_2)$

Variational structure of mean curvature

- surfaces which minimize area
 - · soap bubbles
- at any given point:
 - $k_1 = -k_2$
 - H = 0
 - **H**=H**N**=0

Mean Curvature $(\kappa_1 + \kappa_2)$

Variational structure of mean curvature

- surfaces which minimize area
 - · soap bubbles
- at any given point:

•
$$k_1 = -k_2$$

Mean Curvature $(\kappa_1 + \kappa_2)$

Calculus of Variations

• stationary area \Leftrightarrow grad area = $\mathbf{H} = 0$

$$\overrightarrow{H}$$
 = grad area

 $H = \operatorname{grad} \operatorname{area}$

some prefer

-grad area

Calculus of Variations

• stationary area \Leftrightarrow grad area = $\vec{\mathbf{H}} = 0$

- . -

H = grad area

2xarea = bh

Darea =

(grad area) $v = \Delta area$

(grad area) $v = \Delta area$

$$\Delta area = b \Delta h$$

= $b(\hat{x} \cdot \vec{v})$

$$\Delta \text{area} = b \Delta h$$

$$= b(\hat{\mathbf{t}} \cdot \vec{\mathbf{v}})$$

(grad area) $v = \Delta area$

Mean Curvature Vector H = grad area 2xarea = bh Darea = b sh (grad area) $v = \Delta area$

Evaluation

 sum contributions around each vertex

Evaluation

 sum contributions around each vertex

Evaluation

 sum contributions around each vertex

$$2\mathbf{H}_{i} = \sum_{j} \mathbf{H}_{e_{ij}} = 2\nabla_{i}A$$
$$= \sum_{j} (\cot \alpha_{ij} + \cot \alpha_{ji})(p_{i} - p_{j})$$

"cotan formula"

[Pinkall & Polthier]

Curvature Measures a la Steiner

Steiner, Cauchy, Hadwiger

expand a convex set outward by epsilon

$$\mathcal{K}_{\mathbf{E}} = \{x \in \mathbb{R}^n : d(\mathcal{K}, x) \leq \mathbf{E}\}$$

Inflate a planar polygon by epsilon

What is the new area?

$$V' = V + \dots$$

Inflate a polyhedron

What is the new volume?

$$V' = V + \epsilon \sum_{i} A_{i}$$

Each face contributes a parallelotope

$$V' = V$$

$$+\epsilon \sum_{i} A_{i}$$

$$+\epsilon^{2} \sum_{j} a_{j} \theta_{j}$$

Each edge contributes a wedge of a cylinder

Each vertex contributes a spherical wedge

Each vertex contributes a spherical wedge

Inflate smooth surface, measure swept area $\varepsilon c_1 \int_S H_0 dA$

$$\varepsilon c_1 \int_S H_0 \mathrm{d}A$$

$$+ \varepsilon^2 c_2 \int_S H_1 dA$$

$$+ \varepsilon^3 c_3 \int_S H_2 dA$$

A Steiner walk-through, 3d

$$H_0=1$$
, $H_1=(\kappa_1+\kappa_2)$, $H_2=\kappa_1\kappa_2$

Inflate smooth surface, measure swept area
$$\epsilon c_1 \int_S H_0 \mathrm{d}A^{total} a_{rea}$$

$$+ \varepsilon^2 c_2 \int_S H_1 dA$$

$$+ \varepsilon^3 c_3 \int_S H_2 dA$$

$$H_0=1$$
, $H_1=(\kappa_1+\kappa_2)$, $H_2=\kappa_1\kappa_2$

Inflate smooth surface, measure swept area
$$\epsilon c_1 \int_S H_0 \mathrm{d}A \int_{curva ture}^{total\ area} + \epsilon^2 c_2 \int_S H_1 \mathrm{d}A \int_{curva ture}^{total\ meas} + \epsilon^3 c_3 \int_S H_2 \mathrm{d}A$$

A Steiner walk-through, 3d

$$H_0=1$$
, $H_1=(\kappa_1+\kappa_2)$, $H_2=\kappa_1\kappa_2$

Inflate smooth surface, measure swept area
$$+ \varepsilon^2 c_2 \int_S H_1 \mathrm{d} r \frac{total\ area}{total\ meas} + \varepsilon^3 c_3 \int_S H_2 \mathrm{d} r \frac{total\ area}{curvature}$$

A Steiner walk-through, 3d

$$H_0=1$$
, $H_1=(\kappa_1+\kappa_2)$, $H_2=\kappa_1\kappa_2$

rtex contributes a spherical wedge

$$\varepsilon c_1 \int_S H_0 dA total area$$
 $\varepsilon^2 c_2 \int_S H_1 dr total mean curvature$
 $\varepsilon^3 c_3 \int_S H_2 dr total Gau$

$$H_0=I$$
, $H_1=(\kappa_1+\kappa_2)$, $H_2=\kappa_1\kappa_2$

rtex contributes a spherical wedge

$$\varepsilon c_1 \int_S H_0 \mathrm{d}A$$
 total area $\varepsilon c_1 \int_S H_0 \mathrm{d}A$ total mean $\varepsilon c_2 c_2 \int_S H_1 \mathrm{d}A$ total mean $\varepsilon c_2 c_3 \int_S H_2 \mathrm{d}A$ total Gaussian $\varepsilon c_3 c_3 \int_S H_2 \mathrm{d}A$ total $\varepsilon c_4 c_4 c_5$

$$H_0=I$$
, $H_1=(\kappa_1+\kappa_2)$, $H_2=\kappa_1\kappa_2$

rtex contributes a spherical wedge

$$\varepsilon c_1 \int_S H_0 dA$$
 $total$ area
$$\varepsilon^2 c_2 \int_S H_1 dx$$
 $total$ mean
$$\varepsilon^3 c_3 \int_S H_2 dx$$
 $total$ Gau
$$\varepsilon^3 c_3 \int_S H_2 dx$$

$$H_0=I$$
, $H_1=(\kappa_1+\kappa_2)$, $H_2=\kappa_1\kappa_2$

rtex contributes a spherical wedge

$$\varepsilon c_1 \int_S H_0 dA$$
 total area total mean curvature
$$\varepsilon^2 c_2 \int_S H_1 dr$$
 total Gau
$$\varepsilon^3 c_3 \int_S H_2 dr$$

$$H_0=I$$
, $H_1=(\kappa_1+\kappa_2)$, $H_2=\kappa_1\kappa_2$

rtex contributes a spherical wedge

$$H_0=I$$
, $H_1=(\kappa_1+\kappa_2)$, $H_2=\kappa_1\kappa_2$

$$V' = V \\ + \epsilon \sum_{i} A_{i} \\ + \epsilon^{2} \sum_{j} a_{j} \theta_{j} \\ +$$

$$H_0=I$$
, $H_1=(\kappa_1+\kappa_2)$, $H_2=\kappa_1\kappa_2$

Life & Times of Mean Curvatures

Structure

Species

Habitat

Expression

vector

vertices

cotan formula

variational (area) Steiner polynomial

scalar

edges

length × dihedral angle

A Plug for Intrinsic Measures

Axiomatic approach

- "what is a reasonable measure?"
- straightforward application to parallelotopes

Geometric probability

geometry as a dart throwing game

Theorem Hadwiger (1957)

"These are the only measures you should
 care about" certain restrictions may apply, Not responsible for exaggerated or
 untrue claims. If you are elderly, pregnant, or alive, please ask your doctor before using
 Hadwiger's theorem. Not responsible for incidental, consequential, or any other damages. If you
 are reading this, you are not paying enough attention to the talk. Stop reading this and listen to me.

What is a reasonable measure?

Properties

- ullet a measure is scalar-valued $\mu(S) \in \mathbb{R}$
- empty set

$$\mu(\emptyset) = 0$$

- $\bullet \ \text{additivity} \qquad \mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$
- normalization (parallelotope, P)
 - example: volume

$$\mu_n(P) = x_1 x_2 x_3 \dots x_n$$

Other measures?

Invariant Measures

Intrinsic volumes

- n measures in n dimensions
- how to generalize to compact convex sets?

Geometric probability

- measure points in set
- probability of hitting set

Blindly throw darts... count number of hits Darts: k-dim subspaces of n-D

- points
- lines
- planes
- volumes

Indicator function, $X_C(\omega_i)$

- input: a dart, ω
- output (point dart):
 - 1 if dart hits body
 - 0 if dart misses body

Indicator function, $X_C(\omega_i)$

input: a dart, ω

output (point dart):1 if dart hits body0 if dart misses body

 in general, output is # hits

Throw N random darts to estimate area

$$\frac{A_C}{A_R} \simeq \frac{1}{N} \sum_{i=1}^{N} X_C(\omega_i)$$

$$\downarrow_{k=0}^{k=0}$$

$$\downarrow_{n=2}^{R}$$

Throw N random darts to estimate area Throw all the darts you have...

$$\frac{A_C}{A_R} \simeq \frac{1}{N} \sum_{i=1}^{N} X_C(\omega_i)$$

$$A_C \propto \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} X_C(\omega_i)$$

Throw N random darts to estimate area

Examples of dart-throwing

measure of planes through polyline gives length

measure of lines through rectangle gives surface area

> measure of planes through polytope gives mean width

Hadwiger (1957)

FUNDAMENAL RESULT

Hadwiger (1957)

These measures
form a basis
for all continuous,
additive,
rigid motion invariant
measures on ring of convex sets.

FUNDAMENAL RESULT

Questions to take home

What can we measure?

length, angle, area, Gauss & mean curvatures

Where does it live?

vertex (one-ring), edge (flaps), face

What is its type?

scalar, vector, tensor...

What structure does it preserve?

Gauss-Bonnet, area variation, Steiner polynomial

Further Reading

Smooth
Geometry and the Imagination
by Hilbert and Cohn-Vossen

Discrete
DDG Course Notes chapters 1-3

"Introduction to DDG" [Grinspun and Secord]

"What can we measure?" [Schröder]

"Curvature measures for discrete surfaces" [Sullivan]

Overview

What characterizes shape?

- length area · brief recall of Gaussian curv classic notions
- how to express in discrete setting?

What structures are preserved?

- Gauss-Bonnet
- · Minimal surfaces
- Steiner polynomial

Normal Sections

Special family of curves through point P

- choose any plane containing normal
- · find the curve of plane/surface intersection

Gaussian Curvature

Area of spherical poly 7 - a

$$A = (2 - n)\pi + \sum_{i=1}^{n} \beta_{i}$$

$$A = (2 - n)\pi + n\pi - \sum_{i}^{n} \alpha_{i}$$

$$A = 2\pi - \sum_{i}^{n} \alpha_{i}$$

total Gauss curvature at vertex

Mean Curvature $(\kappa_1 + \kappa_2)$

Variational structure of mean curvature

- · surfaces which minimize area
 - · soap bubbles
- · at any given point:

· H = 0

mean curvature vector

Mean Curvature Vector

Evaluation

· sum contributions around each vertex

$$\begin{split} 2\mathbf{H}_i &= \sum_j \mathbf{H}_{e_{ij}} = 2\nabla_i A \\ &= \sum_j (\cot \alpha_{ij} + \cot \alpha_{ji}) (p_i - p_j) \end{split}$$

"cotan formula" Pinkell & Polithian

A Steiner walk-through, 2d

Life & Times of Mean Curvatures

Structure variational (area) Steiner polynomial

Species scalar vector Habitat vertices edges

Expression cotan formula

Examples of dart-throwing

measure of lines

through rectangle gives surface area

> measure of planes through polytope gives mean width

measure of planes through polyline gives length

