What can we measure?

Eitan Grinspun, Columbia University
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* how to express Iin
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What structures are preserved?
* Gauss-Bonnet
* Minimal surfaces
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* in the continous setting,
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S(u,v) = (x(u,v),y(u,v),z(u,v))

* in the continous setting,
pointwise makes sense




Whatto keepinmind . —

Where do quantities live? N

/f/*“\\
* consider going down ~ N
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parameter lane.... ? o
S(L{,V) = (X(M,V),y(u,V),Z(u, V)) f
* in the cop” Nwus setting,
pointw sense i .
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parameter-free | /’ =
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What to keep in mind

Where do quantities live?

“Pointwise notions considered harmiul”
* quantities “live” on vertices, edges, or faces
* total quantity over a mesh neighborhood

* wait...
isn’t living on a vertex a pointwise notion?

* No. Total quantity over a mesh
neighborhood.



Tangent Vector

Curve on surface, passing through point

—{recall:]

Tangent, the first approximant

The limiting secant as the two points
come together.
P

\
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Curve on surface, passing through point

—[recall:]

Tangent, the first approximant

The limiting secant as the two points
come together.
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Tangent Plane

All tangents at P lie on common plane
* (Gives tangent vector space




Tangent Plane

All tangents at P lie on comm
* (Gives tangent vector space

efe or

on plane /




Metric

g9(v,w) = |v||w| cos Z(v,w)

Length
Angle

Area



in smooth, pointwise setting,
4+ the place to shop for
Metric “first-order” quantities

g(v,w) = |v||w|cos / (v, w)

Length
Angle

Area



Metric

g9(v,w) = |v||w| cos Z(v,w)
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Metric

g(v,w) = 1-1-cos/(v,w)

r

Length
* plug in v=w <
<%

Angle

® use lvl=lwl=1 COS_l 9(67 ,&‘))
Area




Metric

g9(v,w) = |v||w| cos Z(v,w)

Length

* plug in v=w
Angle =

* use lvi=lwl=1 W
Area

* parallelogram fixed by length and angle
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et

Where do these live on a triangle mesh?

Length

* 1 edge
Angle

* 2 edges
Area

* 3 edges (the triangle)




Normal Vector

Perpendicular to tangent plane

* must choose orientation

N

N




Normal Sections

Special family of curves through point P
* choose any plane containing normal
* find the curve of plane/surface intersection
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Normal Sections

Special family of curves through point P
* choose any plane containing normal
* find the curve of plane/surface intersection

LA



Sectional Curvature

Curvature of normal section
* curvature of surface in tangent direction

-[recall smooth deF'n:]_[ recall discrete deF'n:]_

Radius of curvature,” = 1 /K

_1
=

P

Curvature

Total signed curvature

n
tsc(p) = > «;
i=1

Sum of turning
s .
angles. /al\ e
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Sectional Curvature "ormal cur,;, .

Curvature of normal section
* curvature of surface in tangent direction

_[recall smooth deF'n:]_[ recall discrete deF'n:]_

Radius of curvature,” = 1 /K

_ 1
=

Curvature

P

Total signed curvature

n
tsc(p) = > «;
i=1

Sum of turning ;
angles. ,/’al\



Principal Curvatures

Experiment: B
rotate plane about normal, <
. I >
plot sectional curvature A1

\,\
| f:f;'f::y

y
principal

iz s 4 _s e curvatures x; K,
rotation angle d

curvature K«

—




Principal Curvatures

Caution
smooth

case only
Experiment: e v,
rotate plane about normal, J
plot sectional curvature :
P
3t N\
o
8 2.5} /7/
2
@ 2t
v
3 1.5}
0 — principal

1 2 3 a 5 6
rotation angle

curvatures x; K,



_— Caution
Principal Curvatures smooth

raca nnhy

K, and K,
fully specify all
sectional curvatures at P

I

principal

iz 3 4 _s ¢ curvatures x; K,
rotation angle ’




smooth
case only

Mean & Gaussian Curvature

Elementary symmetric
functions of k4, k,

* (Gaussian curvature K = k4,
* mean curvature H = x, + x,



_ Caution
Mean & Gaussian CurvatureN\ e

case only

Gaussian and mean curvatures
(H and K)

fully specify all
sectional curvatures at P
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Mean & Gaussian Curvat

Elementary symmetric
functions of k4, k,

* Gaussian curvature K = kK,
®* mean curvature H =k, + K,
How to apply these pointwise
definitions on a triangle mesh?
* we don’t have a smooth surface
* trouble at every corner (try evaluating H?)



smooth
case only

Mean & Gaussian Curvat

Elementary symmetric
functions of k4, k,

* Gaussian curvature K = kK,
®* mean curvature H =k, + K,

How to apply these pointwise
definitions on a triangle mesh?
* we don’t have a smooth surface
* trouble at every corner (try evaluating H?)

Solution: look for key properties of K and H



Gaussian Gurvature

-[recall:]

GauB map, 11 (X )

Point on curve maps to point on unit circle.




Gaussian Curvature

= o
o # N
>3 3 \\\ /,/" @ \;,
/ w P ( g | —l,“?;
o e il
- e -[recall:]
!L-"/

A GauB map, 11 (x)
K= lim =2 - ‘
p = 1111 —— Point on curve maps to point on unit Ci




Preserve Gauss-Bonnet Theorem

Notion of integrated Gauss curvature as
area of region on unit sphere

e Gauss-Bonnet Theorem



Preserve 2 ps-Bonnet Theorem

Notion
area

e G4

Turning number theorem

/ ol = ek
¢

For a closed curve, @

the integral of curvature is
an integer multiple of 2.



Preserve Gauss-Bonnet Theorem

Notion of integrated Gauss curvature as
area of region on unit sphere

e Gauss-Bonnet Theorem

2N = /KledA:/KdA
7{\_5\ S
2—29

for closed, oriented
surface

1f]-lel+|Vl

for a simplicial complex



Gaussian Kp= hm —=
Curvature |£p= 1m —
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- K, = lim —
Gaussian Curvature p= e
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On a mesh
e can’t take limit... but integral still makes sense

e apply Gauss map to vertex neighborhood
 each face normal maps to a point
« each edge maps to an arc

* vertex neighborhood maps to
spherical polygon




Ag

- K, = lim —
Gaussian Curvature p= e

__

On a mesh
e can’t take limit... but integral still makes sense

e apply Gauss map to vertex neighborhood
 each face normal maps to a point
« each edge maps to an arc
* vertex neighborhood maps to
spherical polygon
® our task:
compute area of
spherical polygon




Gaussian Gurvature

Area of spherical polygon

A=(2—n)’ﬂ+2ﬁi

>

d’
e
°8
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Area of spherical polygon

A=(2—n)’ﬂ+2ﬁi



Gaussian Gurvature

Area of spherical polygon
n
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fotal Gauss curvature at vertex AN~



Gaussian Gurvature

Area of spherical polygon
n
A=Q-n)r+) B
1

fotal Gauss curvature at vertex AN~

* where do | find 3, on my mesh?
























Gaussian Gurvature

Area of spherical polygon

A=(2—n)’ﬂ+2ﬁi













n
AIQW—ZO&Z'
()

fotal Gauss curvature at vertex



Discrete Gauss-Bonnet

Gauss-Bonnet satisfied exactly
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Discrete Gauss-Bonnet

Gauss-Bonnet satisfied exactly
* Gauss-Bonnet

2nx:/K1K2dA:/KdA
S S

IfI-
L]
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Discrete Gauss-Bonnet

Gauss-Bonnet satisfied exactly
* Gauss-Bonnet

LFI Iwﬁﬁte /SKledA /KdA

K;=2n— Zocjk
I/k

ZK,- =2n(V—F/2)=2n(F —3F/2+V) =2my




Discrete Gauss-Bonnet

Gauss-Bonnet satisfied exactly
* Gauss-Bonnet

LFI le[i‘ﬁte /SK]szA /KdA

K; =21 — ZOCJk
li jk E
ZK =2n(V—F/2)=2n(F —3F/2+V) =2mny
face angles

sum to m



Discrete Gauss-Bonnet

In discrete setting,

it's easy to prove Gauss-Bonnet

ZK =2n(V —F/2) =2n(F —3F /2 +V) = 2my
face angles
sum to



T
] A p— 27‘(‘ — Z Oéz‘
Gaussian Curvature :

Intrinsic curvature
* sees only in-plane angles
* does not depend on embedding

Discrete setting

* only pedestrian calculations required
to evaluated, and to prove Gauss-Bonnet

® associated to vertex neighborhood

think fotal Gauss curvature near vertex



Mean Curvature (x; + «,)

Variational structure of mean curvature

* surfaces which minimize area
* soap bubbles

* at any given point:
ey =4, i
s H=0
* H=HN=0 .




Mean Curvature (x; + «,)

Variational structure of mean curvature
* surfaces which minimize area
* soap bubbles
* at any given point:
* ky = -k (>




Mean Curvature (x; + «,)

area is (locally) minimum minimize A
iff Il

mean curvature is zero solve H=0




Mean Curvature Vector

Calculus of Variations
* stationary area < grad area = H=0




Mean Curvature Vector

Som
grad 4 -

Calculus of Variations
* stationary area < grad area = H=0




Mean Curvature Vector

acea = bb
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Mean Curvature Vector

rvarea = bb

AQréa = b Ah |

e 5
(grad area) v = Aarea



Mean Curvature Vector

rvarea = bb

AQreaw = b Ah
= b (€-9)

e 5
(grad area) v = Aarea



Mean Curvature Vector

rvarea = bb

Aorea = b A’n

e
(grad area) v = Aarea b



Mean Curvature Vector

rvarea = bb

Aarec\—-b/}h)

(£-v

:——-ﬂ’\’\g F\
=b-

>
(grad area) v = Aarea b



Mean Curvature Vector

rvarea = bb

Aarea—b/})n)

(£-v

:——-(VP F\
b -

(grad area) v = Aarea b



Mean Curvature Vector

Evaluation

® sum contributions around
each vertex
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Mean Curvature Vector

Evaluation

® sum contributions around
each vertex

— Zj(cotoc,-jJrcotOCji)(Pi—Pj)

“cotan formula”
[Pinkall & Polthier] Qi



Curvature Measures a la Steiner

Steiner, Cauchy, Hadwiger
* expand a convex set outward by epsilon

| min distance to set

Ke={x€R":d(x,x) <¢&}

|




A Steiner walk-through, 2d
Al=A+...

. Inflate a planar

polygon by epsilon

What is the new area?




A Steiner walk-through, 2d

A,:A—FZGCLL‘
+ ..

" Each edge contributes
a rectangle



A Steiner walk-through, 2d
A/ — A —I— Z €,
V. :
2
n ) €0,
5 J

Each vertex
contributes a sector




A Steiner walk-through, 3d
Vi=V4...

Inflate a polyhedron

What is the new
volume?



A Steiner walk-through, 3d
Vi=Vv
+e) A

Each face contributes
a parallelotope




A Steiner walk-through, 3d
Vi=Vv
+e) A
+e2 ) ajb;
]

Each edge contributes
a wedge of a cylinder




A Steiner walk-through, 3d

Vi=Vv
+e) A,

()
+€2 " a6
9
-|—€3 Z Kl
[

Each vertex contributes a spherical wedge




A Steiner walk-through, 3d

Each vertex contributes a spherical wedge



A Steiner walk-through, 3d
Vi=Vv

+ed A
+e Z%‘ '

3
oy Gouss—>" Q*FF Z ]\/

Each vertex contr[ +€327T X h_we ge




Inflation in Smooth Setting

Inflate smooth surface, e Hod A
measure sweptarea 1 [0

+ € / HidA
S

3
A Steiner walk-through, 3d —|_ 8 C3 /S H 2 d A

Vi=Vv

-HZ-"‘,'
' +<2§“10J [Hozl, H1=(K1+K2), H2=K1K2 }
+3 Y K,

Each vertex contributes a spherical wedge




Inflation in Smooth Setting

f
Inflate smooth surface, O%ay
a
measure swept area 1 /SHOd%

- 8262/H1dA
S

3
A Steiner walk-through, 3d —|_ 8 C3 /S H 2 d A

Vi=V

-{—fZ.A,-
' +‘2§’f”i [Ho=1, H1=(K1+K2), H2=K1K2 ]
+3 Y K

Each vertex contributes a spherical wedge




Inflation in Smooth Setting

Inflate smooth surface,

measure swept area 1 SHOd
aE 82(32 / H1
S
A Steiner walk-through, 3d —|_ 8 C3 SH 2dA

V=W
+6ZA,‘
+(QZ(1J-()J- [HO=1' H1=(K1+K2), H2=K1K2 ]

J
+e3 3 K
[

Each vertex contributes a spherical wedge




Inflation in Smooth Setting

Inflate smooth surface,

measure swept area 1 SHOd
aE 82C2 / H1
S
A Steiner walk-through, 3d —|_ 8 C3 SH 2

Vi=Vv

-HZ:A{
' +(2§:(,J-0J- [HO=1' H1=(K1+K2), H2=K1K2 ]
+e3 3 K

Each vertex contributes a spherical wedge




r walk-through, 3d

Vi=V
+e) A
')

+e? > a6

rrtex contributes a spherical wedge

L”oﬂf H,=(i,+x%,), H,= 1‘(2]




r walk-through, 3d

Y =+V{%: Az}/

+e? > a6

rrtex contributes a spherical wedge

L”oﬂf H,=(i,+x%,), H,= 1‘(2]




r walk-through, 3d | Setting

Vi=Vv
? Cy

—|—€2 Z a;0; €C H Ya

eﬁm ]83C3/SH2

rrtex contributes a spherical wedge

LHO_zl'_'le(Kl"'KZ)' H,=K/K, ]













Life & Times of Mean Curvatures

Structure variational (area) | Steiner polynomial
Species vector scalar

Habitat vertices edges

Expression cotan formula length x dihedral angle

[




A Plug for Intrinsic Measures

Axiomatic approach
* “‘what is a reasonable measure?”
* straightforward application to parallelotopes

Geometric probability
®* geometry as a dart throwing game

Theorem Hadwiger (1957)
* “These are the only measures you should

”
care abO Ut Certain restrictions may apply, Not responsible for exaggerated or

untrue claims. If you are elderly, pregnant, or alive, please ask your doctor before using
Hadwiger’s theorem. Not responsible for incidental, consequential, or any other damages. If you
are reading this, you are not paying enough attention to the talk. Stop reading this and listen to me.



What is a reasonable measure?

Properties
* a measure is scalar-valued  u(S) € R
* empty set u(0) =0

e additivity u(AUB)=u(A)+u(B)—u(ANB)
* normalization (parallelotope, P)

* example: volume A
pn(P) = X1x2X3 . . . Xn [/ X3 % ﬁ

Other measures? e »




Invariant Measures

Intrinsic volumes
® N measures in n dimensions
* how to generalize to compact convex sets?

Geometric probability
®* measure points in set
* probability of hitting set




Geometric probability

Blindly throw darts... count number of hits

Darts: k-dim subspaces of n-D
* points

® [ines
* planes
® yvolumes




Geometric probability

Indicator function, X ~(w; )

* input: a dart, o

* output (point dart):
1 if dart hits body
O if dart misses body

k=0
N=




Geometric probability

Indicator function, X '®; (wz)

* input: a dart, w
* output (point dart):

1 if dart hits body

O if dart misses body
®* in general,

output is # hits

k=1
n=2

N=<Z |

o




Geometric probability

Throw N random darts to estimate area

Ac

1 N .,
Ap N Z XC(W’L) .

k=0
n=2 .




Geometric probability

Throw N random darts to estimate area
Throw all the darts you have...




Geometric probability

Throw N random darts to estimate area
Throw all the darts you hav%. arts (\<=O,n=2)

Voly G 'nsje e hitting ’mrége*
g Sl o A5(C)




Examples of
dart- throwmg

L

measure of planes

/ through polyline
mea re of lines gives length
through rectangle
gives surface area C

measure of planes

e

[
through polytqpe s e e o
gives mean width ~\ .



Hadwiger (1957)

EUNDAMENAL RESULL



Hadwiger (1957)

These measures
form a basis
for all continuous,
additive,
rigid motion invariant

measures on ring of convex sels.

CUNDAMENAL RESULI



Questions to take home

What can we measure?
* |ength, angle, area, Gauss & mean curvatures

Where does it live?
* vertex (one-ring), edge (flaps), face

What is its type?

® scalar, vector, tensor...

What structure does it preserve?
® Gauss-Bonnet, area variation, Steiner polynomial



Further Reading

smooth o
Geometry and the Imagination

by Hilbert and Cohn-Vossen
Discrete
DDG Course Notes chapters 1-3

“Introduction to DDG” [Grinspun and Secord]
“What can we measure?” [Schroder]

“Curvature measures for discrete surfaces” [Sullivan]



Overview Normal Sections

What characterizes shape?
* briefrecallof _, —c =
dassic notions 5
* how 10 express in
discrete setting?
What structures are preserved
* Gauss-Bonnet
* Minimal surfaces
* Steiner polynomial

Special family of curves through point P
* cheose any plane containing narmal
+ find the curve of plane/surface intersection

= NT it

length dreq
Gaussian Gul
).~

Gaussian Curvature

Area of spherical poly
n

4=(2—n)n+v1

Mean Curvature (x, + x,)

Variational structure of mean curvature
* surfaces which minimize area
+ soan bubbles
* at any given point:
Ky =%

ok, =
*H=0 '
‘HHNOD
Mean CUrvatyre ‘d
vector

~

‘*
,\=(2| EE I—\ ey ("‘/
-\—2*7— n,

fotal Gauss cuwature at vertex I '

A Steiner walk-through, 2d Life & Times of Mean Curvatures
A, = A+ E €Q; Structure  variational (orea) Steine~ polynomiol
4‘v N Species vector scalor
2 Habitat vertices edges
+ Z € 9 Expression  cotan Formula length x cihedral angle

#
Each vertox
contributes a seclor

Mean Curvature Vector

Evaluation

* sum contributions around
each vertex

W; = LM, =2VA
= ) {cote,; +cotuy)ip,—p;! '

“cotan Formula”
Pinkelt & Poltiiar] @,

J

Examples of
datt-throwmg " ‘

measure of planes

through polyling
meas/ rL of lines gives length
through rectangle
gives surface area .

measure of planes

through polytope
gives mean width




