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Thin shells and thin plates

Thin, flexible objects
Shells are naturally curved
Plates are naturally flat




Related work

Researchers in the graphics community:

* Terzopoulos, Bridson, Breen, etc.
* mass-spring and tensorial models for cloth

® Bobenko & Suris, Pai
 discrete models of elastic curves

[Choi and KoO]



Euler’s elastica

Early formulation of elastic curves

l
Ebend:/ k(s)*ds
0

Bernoulli began generalization to surfaces



Chladni’s vibrating plates

Plate vibrated by
violin bow

Sand settles on
nodal curves



Chladni’s vibrating plates
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Problem setup

What is the
deformation energy?

undeformed deformed
body deformatlon body
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Problem setup

Energy is a non-negative scalar function

[T. L. Brown. Making truth]
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[T. L. Brown. Making truth]
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Problem setup

Internal forces push “downhill”

[T. L. Brown. Making truth]



Germain Poisson Navier



Thin plate energy

Germain’s argument:

* bending energy must be a symmetric even
function of principal curvatures



Thin plate energy

Germain’s argument:

* bending energy must be a symmetric even
function of principal curvatures
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Thin plate energy

Poisson’s linearization

* assuming small displacements, approximate

Ebend _ f(/il, lig) _

1

4

Bt = [(ap?aa

curvature by second derivatives i E
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Thin plate energy

Navier’s equation

* to find minimizer for linearized energy,
solve a partial differential egn (PDE) sa

A*f =0
Bl = [(ap?aa




Thin plate energy




Axiomatic approach

Energy should be:
* symmetric even func’n of principal curvatures
* extrinsic measure
* smooth w.r.t. change in shape
* invariant under rigid-body motion
* simple to compute
® easy to understand



What about masses and springs?

Diagonal springs don’t work for shells.
* undeformed configuration is curved
* incorrect energy minima

N
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Axiomatic “discrete shells”

“Simplest” answer to desiderata

(H — Hg)?

Derivation:
extrinsic change in shape operator

[Tr(p*S) — Tr(5)]°



Computing discrete shells

Elastic energy = —Z(g _ 0. )2“62“




