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Introduction

■ The lesson thus far today:

■ Understanding the geometry of space 
leads to better discretizations.

■ A geometric viewpoint means 
understanding symmetries and invariants.

■What about time discretization?



What is “geometric” mechanics?

■ Geometric mechanics looks at the 
symmetries and invariants of physical 
systems, such as:

■ conservation of energy

■ conservation of linear/angular momentum

■ variational principles



Benefits of using these 
geometric methods

■ If our simulations/animations of physical 
systems are faithful to these principles, we 
can get:

■ greater physical realism

■ at lower computational cost

■ with as-good (or better) accuracy

■ no added complexity in implementation



Ignore geometry at your peril!

■ If we ignore these principles?

■ energy can dissipate or “blow up”

■ momentum not conserved

■ need to burn lots of CPU cycles to 
mitigate these effects and make it look 
decent ($$$$$$)



Example: the pendulum

■ Denote angle with the 
vertical at time     by

■ Motion described by the 
differential equation

which can be rewritten



Solving motion numerically

■ Nonlinear systems like this are often 
impractical or impossible to solve exactly

■ Use a numerical method:

■ replace the continuous functions         and
         by discrete functions      and

■ approximate the differential equations, e.g. 
by first-order Taylor approximation (Euler 
methods)



■ Approximate next time step by drawing 
tangent to curve:

■ As              , this approaches the true value.

Euler methods and Taylor 
approximation



Explicit Euler method

■ Take discrete time steps 
of equal size

■ fast to compute, but:

■ energy blowup

■ unstable for large time 
steps



Implicit Euler method

■ numerically stable, but:

■ energy dissipation

■ added computational cost 
of doing a nonlinear solve 
at each step



Symplectic Euler method(s)

■ good energy behavior

■ exact same CPU time as 
explicit Euler

■ can still get numerical 
instability for large time 
steps (no free lunch!)



Doesn’t matter for some 
applications

■Why would anyone even use non-symplectic 
methods?

■ In many scientific/engineering problems:

■ only concerned about accuracy at a 
particular snapshot of time

■ local accuracy instead of global behavior



Different needs for CG

■ In computer animation, global behavior and 
visual/physical plausibility are paramount

■ Can often relax local accuracy in favor of 
better global behavior

■ Variational and symplectic integrators let us 
decouple local accuracy from global behavior

■ Can get arbitrarily good accuracy, too; some 
misconceptions about this



Answering a quick objection

■ Don’t real systems have dissipation anyway, 
e.g. friction, damping, air resistance?

■ Damping/forcing is step size dependent.

■ Bad for rough-scale “previews.”

■ Decouple energy behavior from step size.

■ Can add damping/forcing to geometric 
methods in a more precise way.



Line of inquiry

■Why is symplectic Euler so much better?

■ How do we come up with other methods 
like this?

■ The approach:

■ Understand why quantities are conserved 
in continuous systems.

■ Emulate the reasoning for discrete ones.



Motion in phase space

Figure 1: Three integrators in phase space (q, p): (left) explicit, (middle) implicit, (right) symplectic. Six initial conditions are shown, with their respective
trajectories; only the symplectic integrator captures the periodic nature of the pendulum. The bold trajectories correspond to the exact same initial condition.

increases over time, rather than being conserved. Thus, in prac-
tice, the solution often “blows up” and becomes unstable as time
progresses—not a great quality for a time integrator. Fortunately,
the implicit Euler is stable: the amplitude of the pendulum’s os-
cillations actually decreases over time, avoiding any chance of nu-
merical divergence (see Fig. 2). However, this stability comes at
a cost: the pendulum loses energy, causing the pendulum to slow
down towards a stop, even if our original equations do not include
any damping forces. Effectively, we resolved the stability issue
through the introduction of numerical dissipation—but we induced
the opposite problem instead. The symplectic method, on the other
hand, both is stable and oscillates with constant amplitudes. This
is obviously a superior method for physical simulation, given that
no additional numerical operations were needed to get the correct
qualitative behavior!

Figure 2: The pendulum: for the equation of motion of a pendulum of length
L and unit mass in a gravitation field g (left), our three integrators behave
very differently: while the explicit Euler integrator exhibits amplifying oscil-
lations, the implicit one dampens the motion, while the symplectic integrator
perfectly captures the periodic nature of the pendulum.

Now, if we are only solving for the position of the pendulum
only at one particular time, it does not really matter which method
we use: taking small enough time steps will guarantee arbitrarily
good accuracy. However, if we wish our time integrator to be glob-
ally predictive, the least we can ask for is to get a pendulum that
actually keeps on swinging. Even a simple animation of a grandfa-
ther clock or a child on a swing would look unrealistic if it seemed
to gain or lose amplitude inexplicably. In other words, the behavior
of energy over time is of key importance. But how do we know that
an integrator will have these good properties ahead of time? Can
we construct them for an arbitrary physical system? The answer, as
we shall see, comes from the world of geometric mechanics and a
concept called symplecticity.

4 Geometric Mechanics

In the familiar Newtonian view of mechanics, we begin by adding
up the forces F on a body and writing the equations of motion using

the famous second law,

F = ma, (4)

where a represents the acceleration of the body. With geomet-
ric mechanics, however, we consider mechanics from a variational
point of view. In this section, we review the basic foundations of
Lagrangian mechanics, one of the two main flavors of geometric
mechanics (we will only point to some connections with Hamil-
tonian mechanics).

4.1 Lagrangian Mechanics

Consider a finite-dimensional dynamical system parameterized by
the state variable q, i.e., the vector containing all degrees of free-
dom of the system. In mechanics, a function of a position q and
a velocity q̇ called the Lagrangian function L is defined as the ki-
netic energy K (usually, only function of the velocity) minus the
potential energy U of the system (usually, only function of the state
variable):

L(q, q̇) = K(q̇)− U(q).

Variational Principle The action functional is then introduced
as the integral of L along a path q(t) for time t ∈ [0, T ]:

S(q) =
T

0

L(q, q̇) dt.

With this definition, the main result of Lagrangian dynamics,
Hamilton’s principle, can be expressed quite simply: this varia-
tional principle states that the correct path of motion of a dynamical
system is such that its action has a stationary value, i.e., the inte-
gral along the correct path has the same value to within first-order
infinitesimal perturbations. As an “integral principle” this descrip-
tion encompasses the entire motion of a system between two fixed
times (0 and T in our setup). In more ways than one, this principle
is very similar to a statement on the geometry of the path q(t): the
action can be seen as the analog of a measure of “curvature”, and
the path is such that this curvature is extremized (i.e., minimized or
maximized).

Euler-Lagrange Equations How do we determine which path
optimizes the action, then? The method is similar to optimizing an
ordinary function. For example, given a function f(x), we know
that its critical points exist where the derivative ∇f(x) = 0. Since
q is a path, we cannot simply take a “derivative” with respect to
q; instead, we take something called a variation. A variation of
the path q is written δq, and can be thought of as an infinitesimal

explicit implicit symplectic



Symplecticity (oversimplified)

■ If we graph trajectories in the phase plane, 
symplectic methods preserve areas in time.

■ This means that a closed loop (e.g. a periodic 
motion, like the pendulum) won’t expand or 
contract.



Geometric mechanics

■We need more than just                   to explain 
these invariants (energy, momentum, 
symplecticity).

■ Physical systems follow optimized 
trajectories (almost like geodesics).

■ If our numerical method optimizes a discrete 
trajectory, then it will have similar geometric 
properties.



■ Lagrangian:

■ Action:

■ Hamilton’s principle:

■ if we “vary” the path slightly, action is 
unchanged to first order

■ variational principle

■ path extremizes action

Lagrangian mechanics
kinetic potential



Euler-Lagrange equations

■ Add a small perturbation (“variation”) to the 
path, which leaves the endpoints fixed

■ Then the variation of the action is



Example: falling object

■ Kinetic energy:

■ Potential energy due to gravity:

■ Lagrangian:

■ Therefore, the equations of motion are



■ Symmetries in the Lagrangian correspond to 
conserved momenta of the motion (Noether)

■ rotational symmetry = angular momentum

■ Lagrangian flows are symplectic

Properties of the Lagrangian



■ Approximate action integral by quadrature 
rule (midpoint, trapezoid, etc.):

■ e.g. midpoint quadrature

■ Discrete action sum becomes

Discrete treatment of 
Lagrangian mechanics



■ The discrete action principle is:

■ Yields the discrete Euler-Lagrange equations

Discrete Euler-Lagrange 
equations



Example: falling object

■ Discrete Lagrangian:

■ Discrete Euler-Lagrange equations:



Adding forcing/dissipation

■ For non-conservative forces, use the discrete 
Lagrange d’Alembert principle

■ This gives the forced discrete Euler-Lagrange 
equations

■ Behavior independent of step size.



Damped pendulum

■ Added damping force 
proportional to velocity 
(e.g. air resistance).

■ Light damping: 
coefficient of 0.1



Damped pendulum

■ Heavier damping: 
coefficient of 0.5

■ Same number of time 
steps as previous movie, 
but different energy 
behavior.



So why are variational 
integrators good?

■ By respecting the geometric structure of the 
mechanical system, we automatically get:

■ conservation of momentum,

■ symplecticity,

■ good energy behavior for equal time steps.

■ (Non-uniform and adaptive time stepping 
are possible, but require more care.)



Examples of good schemes

■ Symplectic Euler

■ Stormer/Verlet integration

■ Midpoint Euler

■ Newmark

■ Symplectic partitioned Runge-Kutta

■ and many others



More recent refinements

■ “Lilyan” function (Kharevych et. al.)

■ replace implicit nonlinear solver with 
more efficient function minimization

■ Asynchronous variational integrators (AVI)

■ different time steps at different points in 
space (where more/less accuracy is 
needed)



Conclusion

■ Variational, symplectic integrators give us:

■ better visual/physical plausibility

■ at lower cost than “traditional” methods

■ respect symmetries and invariants

■ global behavior decoupled from “accuracy”

■ Implementing these integrators is often no 
more difficult than traditional integrators.


