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Introduction

The lesson thus far today:

Understanding the geometry of space
leads to better discretizations.

A geometric viewpoint means
understanding symmetries and invariants.

What about time discretization?




What is “geometric” mechanics?

Geometric mechanics looks at the
symmetries and invariants of physical
systems, such as:

conservation of energy

conservation of linear/angular momentum

variational principles
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Benetits of using these
geometric methods

[t our simulations/animations of physical
systems are faithtul to these principles, we
can get:

greater physical realism
at lower computational cost

with as-good (or better) accuracy

@ no added complexity in implementation




Ignore geometry at your peril!

[t we ignore these principles?

energy can dissipate or “blow up”

momentum hot conserved

need to burn lots of CPU cycles to
mitigate these effects and make it look

decent ($$$$$9)




Example: the pendulum

Denote angle with the
vertical at time ¢ by q(?)

Motion described by the
differential equation

§=—g/lsing

which can be rewritten

q = v

v = —g/lsing




Solving motion numerically

Nonlinear systems like this are often
impractical or impossible to solve exactly

Use a numerical method:

replace the continuous functions ¢(¢)and
v(t) by discrete tunctions ¢ and vy

approximate the differential equations, e.g.
by tirst-order Taylor approximation (Euler
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Euler methods and Taylor
approximation

Approximate next time step by drawing

tangent to curve: O (qs1, Vis1)

- h) ) + hq(tr) + O(h?)
- h) (tr) + ho(ty) + O(R?)

@ \As h — 0, this approaches the true value.




Explicit Euler method

Take discrete time steps
of equal size At = h

Jk+1 = Qqk + hvg
Vk+1 = Uk + h(—g/lsing) |

fast to compute, but:
energy blowup

unstable for large time




Implicit Euler method

qk + hvgia
v + h(—g/lsinqri1) |

numerically stable, but:

energy dissipation

added computational cost |
of doing a nonlinear solve
at each step




Symplectic Euler method(s)

Vk+1 = Uk + h(—g/lsing) -
Jk+1 = Qg + hvgsa _

good energy behavior

exact same CPU time as
explicit Euler

can still get numerical
instability for large time

@steps (no free lunch)
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Doesn’t matter for some
applications
Why would anyone even use non-symplectic
methods?
[n many scientific/engineering problems:

only concerned about accuracy at a
particular snapshot of time

local accuracy instead of global behavior
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Different needs for CG

[n computer animation, global behavior and
visual/physical plausibility are paramount

Can often relax local accuracy in tavor of
better global behavior

Variational and symplectic integrators let us
decouple local accuracy from global behavior

Can get arbitrarily good accuracy, too; some

@misconceptions about this




Answering a quick objection

Don’t real systems have dissipation anyway,
e.g. friction, damping, air resistance?

Damping/forcing is step size dependent.

Bad for rough-scale “previews.”

Decouple energy behavior from step size.

Can add damping/torcing to geometric

Qmethods in a more precise way.




Line of inquiry

Why is symplectic Euler so much better?

How do we come up with other methods

like this?
The approach:

Understand why quantities are conserved
1In continuous systems.

Emulate the reasoning for discrete ones.
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Motion in phase space

Cq q

| ‘5 Zq : R 071 N : . 05 o | |
implicit

symplectic




Symplecticity (oversimplified)

[t we graph trajectories in the phase plane,
symplectic methods preserve areas in time.

This means that a closed loop (e.g. a periodic
motion, like the pendulum) won’t expand or
contract.

—=symplectic




Geometric mechanics

We need more than just F' = ma to explain
these invariants (energy, momentum,
symplecticity).

Physical systems follow optimized
trajectories (almost like geodesics).

[t our numerical method optimizes a discrete
trajectory, then it will have similar geometric

meperties.




[agrangian mechanics

Lagrangian: L(q,q) = K(¢) = V(q)
Action: S(q) = fOT L(q,q)dt
Hamilton’s principle:  §S(q) =0

it we “vary” the path slightly, action is
unchanged to first order

variational principle

@)\ path extremizes action
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Euler-Lagrange equations

Add a small perturbation (“variation”) to the
path, which leaves the endpoints fixed

e = q + €dq 05(q) = =] _, S(qe)
Then the variation of the action 1s
T
0 J, L(q,q fo (8L dq + 2= 5q) dt

d OL
dt 8q) -0q dt

oL
a—q) =9




Example: talling object

Kinetic energy: K (%) = $m3?

Potential energy due to gravity: V(z2) = mgz

Lagrangian: L(z, %) = 2mZ* — mgz

Therefore, the equations of motion are
d .
—mg — 5 (mz) =0

Z=—gq
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Properties of the Lagrangian

Symmetries in the [agrangian correspond to
conserved momenta of the motion (Noether)

rotational symmetry = angular momentum

r

0

6 \Lagrangian flows are symplectic
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Discrete treatment of
[agrangian mechanics

Approximate action integral by quadrature
rule (midpoint, trapezoid, etc.):

4
Lqr, qrt1) = [, L(g,q) dt

e.g. midpoint quadrature

_ Qr+t49k+1 Qk+1—4qk
_hL( XU AR )

lk

Discrete action sum becomes
N—1
L

@ S4(q) = k—0 U qh, Qry1)
\
)




Discrete Fuler-Lagrange
equations

The discrete action principle is:

5Sd(q) — O qr—1 dk+1

N-1
6> L(qk, qrra) (D1 L (g, qis1) - 0qr + DaL(qr, qey1) - 0]
k=0

=0
1

= [ D1L%(qks qev1) + D2 L (qe—1, a)] - dqi

Yields the discrete Fuler-Lagrange equations
D1L%(qx, qk+1) + DaL*(qr—1,qx) = 0

| @ (@k-1,qk) = (Qk, Gk+1)




Example: talling object

Discrete Lagrangian:

L% (zk, 2k4+1) = h |2m (

Discrete Euler-Lagrange equations:

B 1 — 2K\ 1 2k —2k—1\ 1 B
m( ; ) 2hmg—|—m< 7 ) 2hmg—()

241 — 22k T Zk—1

EN 2 —




Adding torcing/dissipation

For non-conservative forces, use the discrete
Lagrange d’Alembert principle

0S¢ + Z L (@ @rr1) - 0qk + Fy (qhs qey1) - O0qry1) =0

This gives the forced discrete Fuler-Lagrange
equations

DoL*(qre—1,q1) + D1Lqr, qrs1) + Ff (qe—1, q) + F; (qr, qra1)

Behavior independent of step size.
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Damped pendulum

Added damping force
proportional to velocity
(e.g. air resistance).

Light damping:

coefficient of 0.1




Damped pendulum

Heavier damping:
coefficient of 0.5

Same number of time
steps as previous movie,
but different energy
behavior.




So why are variational
integrators good?

By respecting the geometric structure of the
mechanical system, we automatically get:

conservation of momentum,
symplecticity,
good energy behavior for equal time steps.

(Non-uniform and adaptive time stepping

@ are possible, but require more care.)




Examples of good schemes

Symplectic Euler

Stormer/Verlet integration
Midpoint Euler

Newmark

Symplectic partitioned Runge-Kutta

and many others

Q
@
N\ y /)f,y




More recent refinements

“Lilyan” function (Kharevych et. al.)

replace implicit nonlinear solver with
more efficient function minimization

Asynchronous variational integrators (AVI)

different time steps at different points in
space (where more/less accuracy is

needed)
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Conclusion

Variational, symplectic integrators give us:

better visual/physical plausibility

at lower cost than “traditional” methods
respect symmetries and invariants
global behavior decoupled from “accuracy”

Implementing these integrators is often no

@)\more difficult than traditional integrators.
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